问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

悖论和错误的区别~

发布网友 发布时间:2022-04-23 09:30

我来回答

3个回答

热心网友 时间:2023-10-09 14:00

可以这么认为:悖论是由正确的理论/方法/途径等得到的错误的结论。错误却是有哪里不对路。
另外,悖论只是名词,错误可以是名词或形容词。

“悖论”(paradox)一词常见诸报端,其字面意思为“荒谬的理论或自相矛盾的话”。从逻辑上看,悖论性的语句具有这样的特征:如果假定这个语句为真,那么会推出这个语句为假;反之,如果假定这个语句为假,又会推出这个语句为真。说它对也不是,不对也不是,真是左右为难。

语义学悖论举例

悖论古已有之。一般认为,最早的悖论是古希腊的“说谎者悖论”。《新约全书·提多书》是这样记述的:

克里特人中的一个本地先知说:“克里特人总是撒谎,乃是恶兽,又馋又懒。”这个见证是真的。

这个克里特岛的“先知”是伊壁孟尼德(Epimenides)。后来欧布里德(Eubulides)将他的话改进为:

我正在说谎。

这句话是真的,还是假的? 如果是句真话,由这句话的内容可知:说话者正在撒谎,既然是撒谎,那么说的是假话;反之,如果这句话是假的,说假话就是说谎,这句话的内容正是“我正在说谎”,因此这句话又是真的。

后来又发现了好几种“说谎者悖论”的变种,例如所谓“说谎者循环”:

A说:“下面是句谎话。”

B说:“上面是句真话。”

“说谎者悖论”和“说谎者循环”是与自然语言的表达方式密切相关的悖论,涉及真假、定义、名称、意义等语义方面的概念,这类悖论被称为“语义学悖论”。语义学悖论的实例很多,“格列林(K.Grelling)-纳尔逊(L.Nelson)悖论”就饶有趣味,它与形容词的应用有关:

将形容词分为两类,一类称为“自谓的”,即可对于它们自身成立、对自己为真的。例如,形容词“Polysyllabic(多音节的)”本身是多音节的,“English(英文的)”本身是英文的,它们都是自谓的。另一类称为“它谓的”,即对于它们自身不成立、对自己不真的。例如,形容词“Monosyllabic(单音节的)”是它谓的,因为这个词不是一个单音节词;“英文的”也是它谓的,因为这个词是中文的而不是英文的。问题来了:形容词“它谓的”是不是它谓的?

得到的结果是:如果“它谓的”是它谓的,那么会推出“它谓的”不是它谓的,反之亦然。导致了自相矛盾。

集合论悖论与公理化

另一类悖论涉及数学中的集合论,被称为“数学悖论”或“集合论悖论”。集合论是19世纪70-80年代由德国数学家康托尔创立,它建立在一种无限观——“实无限”的基础上。所谓“实无限”,即把“无限”作为一个已经完成了的观念实体来看待。例如,在集合论中用N={n:n是自然数}表示全体自然数的集合就是如此。需要指出的是,在此之前的几千年数学发展史中,占主导地位的是另一种无限观,即古希腊哲学家亚里士多德所主张的“潜无限”观念。所谓“潜无限”,是把“无限”作为一个不断发展着的、又永远无法完成的过程来看待。例如,把自然数看成一个不断延伸的无穷无尽的序列1,2,3,…,n,…就是如此。

集合论是数学观念和数学方法上的一次*性变革,由于它在解释旧的数学理论和发展新的数学理论方面都极为方便,因而逐渐为许多数学家所接受。然而,在康托尔创立集合论不久,他自己就发现了问题,这就是1899年的“康托尔悖论”,亦称“最大基数悖论”。与此同时,还发现了其他集合论悖论,最著名的是1901年的“罗素悖论”:

把集合分成两类,凡是不以自身作为元素的集合称为正常集,(例如,自然数集N本身不是一个自然数,因此N是正常集。)凡是以自身作为元素的集合称为异常集。(例如,所有的非生物的集合F并非生物,因此F是异常集。)每个集合或者为正常集或者为异常集。设V为全体正常集所组成的集合,即V={x:x?埸x},那么V是不是正常集?

如果V是正常集,由正常集的定义知V?埸V,又因V是全体正常集的集合,所以正常集V∈V,但这说明V不是正常集,是异常集;反之,如果V不是正常集,是异常集,那么由异常集的定义知V∈V,这说明V是全体正常集组成的集合V的元素,因而V又应该是正常集。

罗素悖论揭示了一个严酷的事实:集合论是隐含着逻辑矛盾的,如果把数学建立在集合论的基础之上,将会使数学大厦从根基上产生深深的裂痕,这种裂痕甚至有可能使整座大厦倾覆。一石激起千层浪,一场关于数学基础问题的论战爆发了。

在这场论战中,最为激进的是以荷兰数学家布劳威尔为代表的直觉主义学派,他们对集合论采取了全盘否定的态度,并认为“实无限”的观念是集合论悖论产生的根源。与此相反,另一些数学家走上了改良的道路,他们试图亡羊补牢,对集合论加以适当的修正,以避免悖论。这方面的代表性成果是公理集合论,它已成为现代数学的一个重要分支。公理集合论采用公理化的方法来刻画集合和集合的运算,并对康托尔集合论中的“概括原则”作了修正。概括原则可表述为:满足性质P的所有对象可以组成一个集合S,即S={x:P(x)},其中的P(x)意为“x具有性质P”。这就认定了任何性质可以决定一个集合,于是前述的F 和V名正言顺地成了集合,悖论也应运而生。

在公理集合论的ZF系统中,用如下的“分离原则”取代了概括原则:若C是一个集合,则C中满足性质P的那些元素构成一个集合S={x:x∈C且 P(x)},即在C是集合的前提下,任何性质可以决定它的一个子集。公理化的结果是:只有正常集才能成为集合,异常集则不能,F和V都不是集合,罗素悖论和其他的集合论悖论得以避免。

就公理集合论能避免已有的集合论悖论,并在此基础上可以进一步发展数学而言,它是成功的。遗憾的是,人们并不能证明公理集合论系统的相容性,即不能证明系统中一定不会推出逻辑矛盾。此外,现代数学中的某些结果需要使用“选择公理”,但这又将导致某些违背人们直觉的怪论(例如“分球怪论”)。因此,公理集合论的处理方式,尤其是选择公理的使用,仍有进一步讨论的必要。

对悖论的一些深入探讨

罗素悖论的发现,也促进了对于悖论(包括语义学悖论)成因的深入思考。1905—1906年间,庞加莱在《数学与逻辑》一文中提出了悖论的根源在于“非直谓定义”的论断。所谓非直谓定义是指:借助于一个总体来定义一个概念(或对象),而这个概念(或对象)本身又属于这个总体。这种定义是循环的(罗素称为“恶性循环”),或者说是“自我涉及”的。例如,异常集“所有的非生物的集合F ”就是如此。因为,F是借助于“所有的非生物”这一总体来定义的,而F本身又是这一总体中的一员。考察语义学悖论,也会发现类似的“循环”或“自我涉及”的踪迹。例如,“说谎者循环”就是A,B两个人的话彼此循环,而格列林-纳尔逊悖论中的“自谓的”和“它谓的”定义,则涉及了形容词对于自身的真假。

1931年,塔尔斯基(A.Tarski)在《形式化语言中的真概念》一文中,提出了“语言层次”的理论。虽然这一理论主要是针对形式语言的,但对于日常语言中的语义悖论研究也有重要意义。塔尔斯基认为,日常语言在语义上是封闭的:既包含了语言表达式,又包含了陈述这些语言表达式语义性质(例如“真”、“假”)的语句。这是语义悖论产生的根源。要建立实质上适当、形式上正确的关于“真句子”的定义,就必须对语言进行分层处理:被谈论的语句属于某一层次的语言(称为“对象语言”),而陈述该语句语义性质的语句则属于高一层次的语言(称为“元语言”)。“说谎者悖论”就是因为断言了自身的真假,混淆了语言的层次而造成的。

1975年,当代著名逻辑学家克里普克(S.A.Kripke)在《真理论纲要》一文中提出了解决悖论的新方案。其中的一个核心概念是“有根性”:要判断一个含有真值谓词(“真”或“假”)的语句,必须寻找这个语句的“根”——相应的不含真值谓词的语句。例如,要判断“‘净水是无色透明的’是真的”这句话的真假,就要看“净水是无色透明的”这句话对不对,后一句话不包含真值谓词,并且它的对错是可以判断的,因此,前一句话是有根的。只有有根的语句才可以判断其真假,无根的语句则不行。“说谎者悖论”和“说谎者循环”都是无根的,这是悖论的基本特征。

新近的悖论研究受到了“情景语义学”的影响,语言逻辑学家注意到:许多语义悖论实际上不仅仅涉及语义,也与说话时的语境(包括语言使用者)等语用因素密切相关。以“说谎者悖论”为例,当某人说“我正在说谎”时,这意味着他在某种语境中表达这句话为真的断言。但是,“‘我正在说谎’是假的”这一语句,却不能在同样的语境中陈述,陈述它的是另一种语境。因此,悖论的根源不在于“自我涉及”,而是因为不同的语境。只要分清每一句话的语境,许多所谓的“悖论”就不再是真正的悖论了。

参考资料:post.baidu.com/f?kz=14411955

热心网友 时间:2023-10-09 14:01

悖论是逻辑学的术语,原本是指那些会导致逻辑矛盾的命题或论述.比如大家熟知的《韩非子·难一》中记载的那位卖矛又卖盾的楚国人,声称他的矛锋利无比,什么样的盾都能刺穿,而他的盾坚韧异常,什么样的矛都刺不穿,人问:“以子之矛,陷子之盾,何如?”楚人无言以对.这里关于矛和盾的论述就是一个悻论.悖论这个词在实际使用中,其涵义已被扩大化,常常包括与人的直觉、经验或客观事实相违背的种种问题或论述.因此有时也被称为“佯谬”、“怪论”等.

悖论虽然看似荒诞,但却在数学哲学史上产生过重要影响.一些著名的悖论曾使高明的哲学家与数学家为之震惊,为之绞尽脑汁,并引发了人们长期艰难而深人的思考.可以说,悖论的研究对促进数学思想的深化发展是立过汗马功劳的.

世界上有记载的最早的悖论,是公元前五世纪希腊哲学家兰诺提出的关于运动的著名悖论.在我国公元前三世纪的《庄子·天下篇》中,也记载了几条著名的悖论辩题.这些悖论的提出和解决都与数学有关.在数学史上震撼最大的悖论是英国哲学家罗索于1902年提出的“集合论悻论”,它几乎动摇了整个数学大厦的基础,引发了所谓的“第三次数学危机”.这些严肃的论题在许多数学方*著作、数学史书籍以及有关的读物中都有记载和讨论.

本文只想谈点轻松的话题.其实,许多数学悖论是饶有趣味的,它不仅可以令你大开眼界,还可以从中享受到无尽的乐趣.面对形形色色富于思考性、趣味性、迷惑性的问题,你必须作一点智力准备,否则可能就会在这悖论迷宫中转不出来了.看看下面的几个小故事,你就会相信此话不假.

第一个故事发生在一位调查员身上.这位调查员受托去A、B、C三所中学调查学生订阅《中学生数学》的情况,他很快统计出,A校男生订阅的比例比女生订阅的比例要大些,对B校和C校的调查也得出同样的结果.于是他拟写了一个简要报道,称由抽取的三所学校的调查数据看,中学生中男生订阅《中学生数学》的比例比女生大.后来,他又把三所学校的学生合起来作了一遍统计复核,匪夷所思的事情发生了,这时他得出的统计结果令他大吃一惊,原来订阅《中学生数学》的所有学生中,女生的比例比男生要大些,怎么会是这样呢?这就象在玩一个魔术,少的变多了,多的变少了.你能帮他找找原因吗?

接下来的这个悖论似乎更简单了.有人把它归入数学中对策论的研究范畴.

一位美国数学家来到一个赌场,随便叫住两个赌客,要教给他们一种既简单又挣钱的赌法.方法是,两个人把身上的钱都掏出来,数一数,谁的钱少就可以赢得钱多的人的全部钱.赌徒甲想,如果我身上的钱比对方多,我就会输掉这些钱,但是,如果对方的钱比我多,我就会赢得多于我带的钱数的钱,所以我赢的肯定要比输的多.而我俩带的钱谁多谁少是随机的,可能性是一半对一半,因此这种赌法对我有利,值得一试.赌徒乙的想法与甲不谋而合.于是两个人都愉快地接受了这位数学家的建议.看来这真是一种生财有道的*.

现在的问题是,一场*怎么会对双方都有利呢?这象不象一场机会均等的猜硬币正反面的游戏,输了只付1元,而赢了则收2元呢?据说这是个一直让数学和逻辑学家头疼的问题.《科学美国人》杂志社一直在征求这个问题的答案呢.其实只要认真分析一下,对这个问题也不难给出有说服力的解释.

让我们再来看一个逻辑学的悖论吧.一位数学教授告诉学生,考试将在下周内某一天进行,具体在星期几呢?只有到了考试那天才知道,这是预先料不到的.学生们都有较强的逻辑推理能力,他们想,按教授的说法,不会是星期五考试,因为如果到了星期四还没有考试,那教授说的“只有到了考试那天才知道,这是预先料不到的”这句话就是错的.因此星期五考试可以排除.那就只可能在星期一到星期四考.既然这样,星期四也不可能考,因为到了星期三还没有考试的话,就只能是星期四了,这样的话,也不会是预料不到的.因此星期四考也被排除了.可以用同样的理由推出星期三、星期二、星期一都不可能考试.学生们推出结论后都很高兴,教授的话已经导出矛盾了,轻轻松松地过吧.结果到了下周的星期二,教授宣布考试,学生们都愣住了,怎么严格的推理失效了呢?教授确实兑现了自己说的话,谁也没有能预料到考试的时间.现在请你想一想,学生们的推理究竟错在哪里呢?

关于运动的悖论有很悠久的历史,这里介绍的“蚂蚁与橡皮绳悖论”是一道让你的直觉经受考验的数学趣题.问题是这样的:一只蚂蚁沿着一条长100米的橡皮绳以每秒1厘米的匀速由一端向另一端爬行.每过1秒钟,橡皮绳就拉长 100米,比如 10秒后,橡皮绳就伸长为1000米了.当然,这个问题是纯数学化的,既假定橡皮绳可任意拉长,并且拉伸是均匀的.蚂蚁也会不知疲倦地一直往前爬,在绳子均匀拉长时,蚂蚁的位置理所当然地相应均匀向前挪动.现在要问,如此下去,蚂蚁能否最终爬到橡皮绳的另一端?

也许你会认为,蚂蚁爬行的那点可怜的路程远远赶不上橡皮绳成万倍的不断拉长,只怕是离终点越来越远吧!但是千真万确,蚂蚁爬到了终点,奇怪吗?

错误是不可避免的

热心网友 时间:2023-10-09 14:01

错误是你的推导过程、思维方式有错,最后得到错的结果。悖论是你的推导、思维都没有错,但是也得到了前后矛盾的结果。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
ef英语哪个好 EF英孚英语培训怎么样? 英孚英语好不好 EF英孚教育到底好不好 大佬们,麦芒7和荣耀10那个值得入手?2500以下的机子还有啥好推荐的么... 介绍几款2500元以前的手机 像素一定要高 其他的不做要求 近期想入手一部安卓手机,价格2200到2500左右…买HTC desire Z还是 三星... 笔记本忘记开机密码怎么办急死了 笔记本电脑屏幕开机锁忘记密码 怎么办?急死了 华硕笔记本电脑开机密码忘记了怎样找回?系统是Windows 7旗舰版... 网贷借款收会员费才能提现的是骗子吗? 网贷借款收会员费才能提现的是骗子吗? 什么是悖论?著名的悖论有哪些命题? 被人骗贷了名校贷,怎么样才能查询自己在名校贷到底贷了多少钱,去银 被人骗贷了名校贷,怎么样才能查询自己在名校贷到底贷了多少钱,去银 什么叫“悖论”? 名校贷倒闭了但是我充值进去的还款金被冻结,软件上显示我逾期,该怎么办? 什么是“悖论”? 名校贷倒闭了但是我充值进去的还款金被冻结,软件上显示我逾期,该怎么... 什么是悖论? 立论和驳论该怎么写? 贷款平台欺诈怎么举报?p2p平台违规怎么维权?我在一个叫名校贷的平台 贷款平台欺诈怎么举报?p2p平台违规怎么维权?我在一个叫名校贷的平台 如何区别驳论文和立论文 校园名校贷诈骗,诈骗人已经抓住,并且立案,受骗人该怎么做? 之前用了一个网贷,每月定期还款,现在网贷被立案侦查,无法接收平台验证码怎么办? 你好,名校贷诈骗,被骗金额有160万,警方已经立案,会不会让我们继续 蔬菜水果种类大全 北京冬天去哪里玩 北京冬天哪些旅游景点比较好玩? 世界三大悖论是什么?其各自有什么作用,告诉了我们什么? 别同学骗去做分期。(他说不用还款,并且不会上征信)由于我完全不懂,一开始被他骗去捷信,他和那个业务 别同学骗去做分期。(他说不用还款,并且不会上征信)由于我完全不懂,一开始被他骗去捷信,他和那个业务 悖论来源于哪里?有什么典故? 悖论的产生原因 什么叫悖论 诡辩 以及逻辑与抽象的关系 悖论是什么 哲学上的著名悖论主要有哪些? 佯谬和悖论区别是什么? 著名的五大悖论 怎么理解自相矛盾和悖论 矛盾和悖论的关系 matlab中damp函数怎么调用? MATLAB控制系统小问题 一个简单的MATLAB问题 运行MATLAB时电脑出现蓝屏(蓝屏占半个屏幕)英文代码如下 请问是怎么回事(以前也出现过两次这种现象) matlab置乱图像复原 求助,matlab高手帮我看看这程序错在哪? matlab7.0命令大全 程序写入matlab,运行出现 Function is not defined for a first argument of class 'char'.不知道怎么回