发布网友 发布时间:2022-04-23 12:33
共2个回答
热心网友 时间:2023-10-13 13:04
抽样分布也称统计量分布、随机变量函数分布,是指样本估计量的分布。
意义:采用同样的抽样方法和同等的样本量,从同一个总体中可以抽取出许许多多不同的样本,每个样本计算出的样本统计量的值也是不同的。样本统计量也是随机变量,抽样分布则是样本统计量的取值范围及其概率。
其他分布:
统计中用随机变量X的取值范围及其取值概率的序列来描述这个随机变量,称之为随机变量X的概率分布。如果我们知道随机变量X的取值范围及其取值概率的序列,就可以用某种函数来表述X取值小于某个值的概率,即为分布函数:F(X)=P(X≤z)。
例如,一个由N家工业企业组成的总体,X为销售收入。将总体所有企业的销售收入按大小顺序排队,累计出总体中销售收入小于某值x的企业数量并除以总体企业总数N,就可得到总体中销售收入小于x的企业的频率,也即抽取一个销售收入小于x的企业的概率。此频率或概率随着x值不同而变化形成一个序列,形成了销售收入X的概率分布。
总体分布是在总体中X的取值范围及其概率。
样本分布是在样本中X的取值范围及其概率。上例中,如果抽取n个企业作为样本,我们同样可以用这n个销售收入的取值范围及其概率描述其分布,也即样本分布。样本分布也称为经验分布,随着样本容量n的逐渐增大,样本分布逐渐接近总体分布。
热心网友 时间:2023-10-13 13:05
样本来自总体,因此样本中包含了有关总体的丰富的,但是这些是零散的,为了把这些零散的集中起来反映总体的特征,我们取得样本之后,并不是直接利用样本进行推断,而需要对样本进行一番“加工”和“提炼”,把样本中所包含的有关尽可能地集中起来,种有效的办法就是针对不同的问题,构造出样本的某种函数,这就是统计量。不同的函数可以反映总体的不同的特征。