发布网友 发布时间:2023-01-04 23:53
共1个回答
懂视网 时间:2023-01-05 04:15
1、角动量定理又称动量矩定理。
2、表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。
3、动量矩定理可用来解决质点系动力学中与转动有关的问题。一般情况下,对于O点是动点的,这个定理不成立,但O点是质点系的质心时例外。
热心网友 时间:2024-12-02 13:05
角动量定理又称动量矩定理。
角动量定理是表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。角动量守恒定律是用来叙述刚体旋转运动的方法L=r*p=r*(mv)=mr²w=Iw。
其中,r表示以质点到旋转中心(轴心)的距离(标量值可以理解为半径的大小),方向由原点指向物体位置的矢量(即矢径),L表示角动量,v表示线速度,P表示动量,I表示惯性张量,w表示角速度(矢量)。角动量是描述物体转动状态的量。又称动量矩。角动量是矢量,它在通过O点的某一轴上的投影就是质点对该轴的角动量(标量)。
对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩都为零。只需要利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。