函数的零点个数怎么求
发布网友
发布时间:2022-04-23 12:53
我来回答
共2个回答
好二三四
时间:2022-08-06 13:09
判断函数的零点个数的方法:
1、令函数值等于零,解方程,求出的解的个数即为函数的零点个数。
2、基本初等函数利用它的性质。如二次函数,用判别式。
3、利用零点存在定理:闭区间上的连续函数,若在区间的端点函数值异号,则函数在这段开区间上有且至少有一个零点。
4、利用零点惟一性定理:闭区间上的单调连续函数,若在区间的端点函数值异号,则函数在这段开区间上有惟一零点。
5、注:必要时用导数判断单调性。
热心网友
时间:2022-08-06 10:17
f(x)=0求零点个数
方法一
令y=f(x),对其求导,得出函数在各区间的单调性。
通过观察定义域左右端的极限,非连续点的左右极限以及各驻点的函数值,配合单调性就能得出零点个数。
比如lnx–1/(x–1)=0零点个数
令f(x)=lnx–1/(x–1)
函数在x=1处不连续
f'(x)=1/x+1/(x–1)²>0
所以函数在(0,1)单调递增,(1,+∞)单调递增
lim(x→0) f(x)=–∞
lim(x→1–) f(x)=+∞
lim(x→1+) f(x)=–∞
lim(x→+∞) f(x)=+∞
根据单调性,函数f(x)在(0,1)上必存在一个零点,(1,+∞)上必存在一个零点
所以f(x)=0有两个零点
方法二
就是数形结合将零点问题转化为两个函数的交点问题,通过研究两个函数性质画出图像得出交点个数。
比如lnx–1/(x–1)=0
lnx=1/(x–1)
就可以转化为f(x)=lnx与g(x)=1/(x–1)的交点问题
画出图像可得出有两个交点,即原方程有两个零点。