抛物线的切线方程是什么公式啊?
发布网友
发布时间:2023-01-06 05:08
我来回答
共1个回答
热心网友
时间:2023-07-01 05:08
抛物线的切线方程没有公式
标准抛物线分为
y^2=2px
x^2=2py
y^2=-2px
x^2=-2py,p>0
等四种类型,3,4项是1,2项的延伸
对于抛物线方程为y^2=2px,抛物线上一点M(a,b)的切线
可设切线方程为y-b=k(x-a)
联立切线与抛物线。
y=k(x-a)+b
则
[k(x-a)+b]^2-2px=0
整理得
k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0
由相切得
△=0
即(2k^2a+2p-2kb)^2-4k^2*(k^2a^2+b^2-2kba)=0
可求得k=p/b。
代回y-b=k(x-a)
y=p/b*(x-a)+b
同理对x^2=2py类型也可以求出切线方程
y=a/p*(x-a)+b
--------------------------------
以上是运用方程联立求△=0,得出斜率。
如果有学导数的话,只须对抛物线方程两边求导,得出改点的导数即切线斜率,得出方程。
另x^2=2py类型要注意抛物线顶点的斜率不存在,要分别讨论。