酶的催化机理是怎么样的?
发布网友
发布时间:2022-04-23 12:03
我来回答
共4个回答
热心网友
时间:2023-10-12 20:34
呵呵 楼上的这位大哥说错了,真是的你是学化学的吧 你说的那个是催化剂的反应机理 楼主文的是酶的催化作用 是生物问题 哪有降低什么反应活化能啊?错了呵呵 酶的反应机理如下:
蛋白质的空间结构去看,而不能孤立地看形成蛋白质后的氨基酸残基。因为酶一般都是具有*,或四级空间结构的,其中有功能的是部分氨基酸残基形成的结构域,包括底物结合部位和催化部位。首先底物结合部位和底物结合,再由催化部位作用,形成过渡态中间体,进而使底物发生化学变化。
生物学中的酶是具有高活性的蛋白分子。它的作用机理
有很多种,如趋近作用,亲核作用,亲电子作用等。
它具有高效性,专一性,条件性(条件严格,因为蛋白质容易变性)
而化学里讲的催化剂只具有一般的催化作用,
其作用机理是降低化学反映的活化能。
-----------------------------------------------------------
生化中酶的作用机理:
酶的作用机理
酶催化反应机理的研究是当代生物化学的一个重要课题。它探讨酶作用高效率的原因以及酶反应的重要中间步骤。
酶原的激活(proenzyme activation)着重研究酶在激活——由无活性的酶原转变成有活性的酶时构象发生的变化。
一、与酶的高效率有关的因素
据现在所知,重要的因素有以下几个方面:
1.底物与酶的“靠近”(proximity)及“定向”(orientation)
由于化学反应速度与反应物浓度成正比,若在反应系统的某一局部区域,底物浓度增高,则反应速度也随之增高。提高酶反应速度的最主要方法是使底物分子进入酶的活性中心区域,亦即大大提高活性中心区域的底物有效浓度。曾测到过某底物在溶液中的浓度为0.001mol/L,而在其酶活性中心的浓度竟达100mol/L,比溶液中的浓度高十万倍!因此,可以想象在酶的活性中心区域反应速度必定是极高的。
“靠近“效应对提高反应速度的作用可以用一个著名的有机化学实验来说明,如表4-12,双羧酸的单苯基酯,在分子内催化的过程中,自由的羧基作为催化剂起作用,而连有R的酯键则作为底物,受—COO-的催化,破裂成环而形成酸酐,催化基团—COO-愈靠近底物酯键则反应速度愈快,在最靠近的情况下速度可增加53000倍。
但是仅仅“靠近”还不够,还需要使反应的基团在反应中彼此相互严格地“定向”,见图4-19。只有既“靠近”又“定向”,反应物分子才被作用,迅速形成过渡态。
当底物未与酶结合时,活性中心的催化基团还未能与底物十分靠近,但由于酶活性中心的结构有一种可适应性,即当专一性底物与活性中心结合时,酶蛋白会发生一定的构象变化,使反应所需要的酶中的催化基团与结合基团正确地排列并定位,以便能与底物楔合,使底物分子可以“靠近”及“定向”于酶,这也就是前面提到的诱导楔合。这样活性中心局部的底物浓度才能大大提高。酶构象发生的这种改变是反应速度增大的一种很重要的原因。反应后,释放出产物,酶的构象再逆转,回到它的初始状态。对溶菌酶及羧肽酶进行的X-衍射分析的实验结果证实了以上的看法。Jenck等人指出“靠近“及“定向”可能使反应速度增长108倍,这与许多酶催化效率的计算是很相近的。
2.酶使底物分子中的敏感键发生“变形”(域张力)(distortion或strain),从而促使底物中的敏感键更易于破裂。
前面曾经提到,当酶遇到它的专一性底物时,发生构象变化以利于催化。事实上,不仅酶构象受底物作用而变化,底物分子常常也受酶作用而变化。酶中的某些基团或离子可以使底物分子内敏感键中的某些基团的电子云密度增高或降低,产生“电子张力”,使敏感键的一端更加敏感,更易于发生反应。有时甚至使底物分子发生变形,见图4-20A,这样就使酶-底物复合物易于形成。而且往往是酶构象发生改变的同时,底物分子也发生形变,见图 4-20 B,从而形成一个互相楔合的酶-底物复合物。羧肽酶A的X-衍射分析结果就为这种“电子张力”理论提供了证据。
3.共价催化(covalent catalysis)
还有一些酶以另一种方式来提高催化反应的速度,即共价催化。这种方式是底物与酶形成一个反应活性很高的共价中间物,这个中间物很易变成过渡态,因此反应的活化能大大降低,底物可以越过较低的“能阈”而形成产物。
共价催化可以提高反应速度的原因需要从有机模式反应的某些原理谈起,共价催化的最一般形式是催化剂的亲核基团(nucleophilic group)对底物中亲电子的碳原子进行攻击。亲核基团含有多电子的原子,可以提供电子。它是十分有效的催化剂。亲核基团作为强有力的催化剂对提高反应速度的作用可由下面亲核基团催化酰基的反应中看出:第一步,亲核基团(催化剂Y)攻击含有酰基的分子,形成了带有亲核基团的酰基衍生物,这种催化剂的酰基衍生物作为一个共价中间物再起作用;第二步,酰基从亲核的催化剂上再转移到最终的酰基受体上,
(1)亲核基团(Y)催化的反应:
(2)非催化的反应:
这种受体分子可能是某些醇或水。第一步反应有催化剂参加,因此必然比没有催化剂时底物与酰基受体的反应更快一些;而且,因为催化剂是易变的亲核基团,因此如此形成的酰化催化剂与最终的酰基受体的反应也必然地要比无催化剂时的底物与酰基受体的反应更快一些,此两步催化的总速度要比非催化反应大得多。因此形成不稳定的共价中间物可以大大加速反应。酶反应中可以进行共价催化的、强有力的亲核基团很多,酶蛋白分子上至少就有三种,即图4-21中所指出的丝氨酸羟基、半胱氨酸巯基及组氨酸的咪唑基。此外,辅酶中还含有另外一些亲核中心。共价结合也可以被亲电子基团(electrophilic group)催化,最典型的亲电子
等也都属于此类,它们可以接受电子或供出电子。
下面将通过共价催化而提高反应速度的酶,按提供亲核(或亲电子)基团的氨基酸种类,分别归纳如表4-13:
丝氨酸类酶与酰基形成酰基-酶;或与磷酸基形成磷酸酶,如磷酸葡萄糖变位酶。半胱氨酸类酶活性中心的半胱氨酸巯基与底物酰基形成含共价硫酯键的中间物。组氨酸类酶活性中心的组氨酸咪唑基在反应中被磷酸化。赖氨酸类酶的赖氨酸ε-氨基与底物羰基形成西佛碱中间物。
4.酸碱催化(acid-base ctatlysis)
有机模式反应指出,酸碱催化剂是催化有机反应的最普遍的最有效的催化剂。
有两种酸碱催化剂,一是狭义的酸碱催化剂(specific acid-base catalyst),即H+与OH-,由于酶反应的最适pH一般接近于中性,因此H+及OH-的催化在酶反应中的重要性是比较有限的。另一种是广义的酸碱催化剂(general acid-base catalyst),指的是质子供体及质子受体的催化,它们在酶反应中的重要性大得多,发生在细胞内的许多种类型的有机反应都是受广义的酸碱催化的,例如将水加到羰基上、羧酸酯及磷酸酯的水解,从双键上脱水、各种分子重排以及许多取代反应等。
酶蛋白中含有好几种可以起广义酸碱催化作用的功能基,如氨基、羧基、硫氢基、酚羟基及咪唑基等。见表4-14。其中组氨酸的咪唑基值得特别注意,因为它既是一个很强的亲核基团,又是一个有效的广义酸碱功能基。
影响酸碱催化反应速度的因素有两个,第一个是酸碱的强度,在这些功能基中,组氨酸咪唑基的解离常数约为6.0,这意味着由咪唑基上解离下来的质子的浓度与水中的[H+]相近,因此它在接近于生物体液pH的条件下,即在中性条件下,有一半以酸形式存在,另一半以碱形式存在。也就是说咪唑基既可以作为质子供体,又可以作为质子受体在酶反应中发挥催化作用。因此,咪唑基是催化中最有效最活泼的一个催化功能基。第二个是这种功能基供出质子或接受质子的速度,在这方面,咪唑基又是特别突出,它供出或接受质子的速度十分迅速,其半寿期小于10-10秒。而且,供出或接受质子的速度几乎相等。由于咪唑基有如此的优点,所以虽然组氨酸在大多数蛋白质中含量很少,却很重要。推测它很可能在生物进化过程中,不是作为一般的结构蛋白成分,而是被选择作为酶分子中的催化结构而存在下来的。
广义的酸碱催化与共价催化可使酶反应速度大大提高,但是比起前面两种方式来,它们提供的速度增长较小。尽管如此,还必须看到它们在提高酶反应速度中起的重要作用,尤其是广义酸碱催化还有独到之处:它为在近于中性的pH下进行催化创造了有利条件。因为在这种接近中性pH的条件下,H+及OH-的浓度太低,不足以起到催化剂的作用。例如牛胰核糖核酸酶及牛凝乳蛋白酶等都是通过广义的酸碱催化而提高酶反应速度的。
5.酶活性中心是低介电区域
上面讨论了提高酶反应速度的四个主要因素。此外,还有一个事实必须注意,即某些酶的活性中心穴内相对地说是非极性的,因此,酶的催化基团被低介电环境所包围,在某些情况下,还可能排除高极性的水分子。这样,底物分子的敏感键和酶的催化基团之间就会有很大的反应力,这是有助于加速酶反应的。酶活性中心的这种性质也是使某些酶催化总速度增长的一个原因。
为什么处于低介电环境中的基团之间的反应会得到加强?可以用水减弱极性基团间的相互作用来解释。水的极性和形成氢键能力使它成为一种具有高度作用力的分子,水的介电常数非常高(表4-15)。它的高极性使它在离子外形成定向的溶剂层(oriented solvent shell),产生自身的电场,结果就大大减弱了它所包围的离子间的静电相互作用或氢键作用。
上面介绍了实现酶反应高效率的几个因素,但是并不能指出哪一种因素可以影响所有酶的全部催化活性。更可能的情况是:不同的酶,起主要影响的因素可能是不同的,各自都有其特点,可以受一种或几种因素的影响。
------------------------------------------------------
催化剂(化学中)的作用:
酶作用在于降低反应活化能(Energy of activation EACT):
酶促反应速度比非催化反应高108~1020倍,比一般催化反应高107~1013。
化学反应速率依赖三个因素:碰撞频率、能量因素、概率因素(有效碰撞)。
有效碰撞:能发生化学反应的分子间碰撞。
活化分子:能发生有效碰撞的分子。
活化能:在任何化学反应中,反应物分子必须超过一定的能阈,成为活化的状态,才能发生变化,形成产物。这种比一般分子高出的能量或提高低能分子达到活化状态的能量,称为活化能。
热心网友
时间:2023-10-12 20:34
酶的催化确实有降低反应活化能,并且能否降低反应活化能是酶能否发生催化作用的关键。首先,以酶为催化剂的反应必须且只能是热力学允许的反应,而任何一种热力学反应其底物分子所含有的能量都较低,以至于底物之间很难发生化学反应。其次,我们就要考虑怎么能发生化学反应呢?如果降低了底物转变为过渡态分子所需要达到的能量(过渡态能量高于底物能量),那么反应就可以顺利进行。如何降低这个能量呢(底物分子从初态到达过渡态的这个能量就是反应的活化能),这个问题就转化成如何降低活化能了。这里,有个知识应该知道一下,当酶与底物结合时是放出能量的,叫释能反应就是释放能量的反应。现在咱们再看如何降低活化能:酶与底物结合释放的结合能降低了活化能(刚才提过,就是变成过渡态需要达到的能量),使底物只需较少的能量便可进入到过渡态,这样子化学反应就比一般没有催化剂或者其他催化剂催化要快得多了。综上所述,确实有降低反应活化能这一关键步骤。我是根据医学教材中生物化学一科的知识解答的。不知道你问的是不是医学方向的知识。
热心网友
时间:2023-10-12 20:35
认识酶的催化机理前,需了解相关的模型学说。
关于其模型,曾经有两种假说:
“钥匙-锁孔”假说:
该假说由 Emil Fischer与1884年首先提出。他认为酶与相关底物呈现出固定的互补几何构型。尽管该假说成功地解释了酶的专一性特征,但却未能解释酶在转变状态下持有的稳定性。该假说在随后被证明为“非准确的”,并却被随之出现的诱导吻合假说取代。
“诱导吻合”假说:
1958年,Daniel Koshland 在“钥匙-锁孔”学说上做了相当的修改和完善。他认为,酶促反应中,酶与底物的结合地点,即反应的发生部位,构成酶活性结构的氨基酸侧链随着反应的进行持续地发生着精确的构象转变,从而确保反应的不断进行。在某些场合下,如glycosidases介导下的酶促反应,其底物本身与酶结合时也发生着细微的结构转变。反应的活化部位,酶与底物持续地进行相互的构象转变,直至二者的电荷和外形不再改变,此时,酶与底物已经完全牢固地结合在了一起。
机制:
1:通过对底物、产物分子过渡态构造的绑定,降低激活能阈值。(即改变底物分子的空间构型,使之达到最利于反应的状态。)
2:提供一个与转变状态时带有相反电荷的分配环境降低转变状态能量需求。
3:提供一个可选择的反应路径。例如,在酶的作用下,底物首先形成ES媒介复合物,从而优化反应历程,引导反应的结束。
--------------------------------------------------
热心网友
时间:2023-10-12 20:35
酶是通过降低反应的活化能从而达到催化作用的。
“活化能”是使分子处于 能够参加化学反应的活跃状态 所需的最小的能量。
就好像小汽车过山坡需要很大的能量,酶就好比给山中间挖了个隧道。