发布网友 发布时间:2022-04-23 22:09
共2个回答
热心网友 时间:2023-11-01 05:04
1、两类错误的区别
二者性质不同,前提条件不同,这是它们的区别。假设检验中的两类错误指α型错误和β型错误,前者又称为弃真错误,指当零假设为真时错误地拒绝了它,因此其大小等于事先设置的显著型水平,即0.05或0.01;后者又称为取伪错误,指当零假设为假时错误地接受了它。
2、两类错误的联系
两类错误的联系是:它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在总体间真实差异不变情况下,它们之间是一种此消彼长的关系,因此,不可能同时减小两种错误的发生可能,常用的办法是固定α的情况下尽可能减小β,比如通过增大样本容量来实现。
扩展资料:
假设检验中两类错误的危害
犯β型错误得危害较大,由于报告了本来不存在的现象,则因此现象而衍生出的后续研究、应用的危害将是不可估量的。相对而言,α型错误的危害则相对较小,因为研究者如果对自己的假设很有信心,可能会重新设计实验,再次来过,直到得到自己满意的结果(但是如果对本就错误的观点坚持的话,可能会演变成β型错误)。
热心网友 时间:2023-11-01 05:04
假设检验及其两类错误是数理统计学中的名词。在进行假设检验时提出原假设和备择假设,原假设实际上是正确的,但我们做出的决定是拒绝原假设,此类错误称为第一类错误。原假设实际上是不正确的,但是我们却做出了接受原假设的决定,此类错误称为第二类错误。