发布网友 发布时间:2022-04-23 20:20
共1个回答
热心网友 时间:2023-10-08 23:06
(一)SYZX系列绳索取心液动锤的应用及其钻进工艺优化
冲击回转钻进是在钻头已承受一定静载荷的基础上,以纵向冲击力和回转切削力共同破碎岩石的钻进方法。SYZX75、95型绳索取心液动锤将绳索取心和液动锤两大钻进优势技术结合形成的一种新钻进方法,是中国地质科学院勘探技术研究所研发的、具有国际领先水平的钻探科技新成果,可大大地提高钻进效率和回次进尺,也可有效地控制孔斜、提高破碎地层的岩心采取率。该课题在马坑钻探中开展了SYZX系列绳索取心液动锤的推广应用,并进行绳索取心液动锤钻进工艺优化。在马坑矿区绳索取心液动锤的使用及其与普通绳索取心钻进的现场对比试验,证明了该技术在矿区的适用性和优越性,应大力推广应用。
(1)与普通绳索取心钻进相比钻进效率大幅度提高。由于金刚石绳索取心钻进采用以较高转速为主的钻进规程参数,具有回转钻进切削、磨削碎岩的特点。使用液动锤后,给钻头施加高频脉动载荷,冲击力瞬时可达极高值,使被钻进的岩石在交变的外力作用下产生脆裂剪崩的体积破碎,明显提高了机械钻速(破碎岩石的效率),岩石越坚硬,效率提高的幅度愈明显。
(2)在可钻性9~12级坚硬“打滑”地层,钻速显著提高。按目前的绳索取心钻进水平条件,一般不宜在10~12级的岩层中钻进。在致密完整、弱研磨性、坚硬的“打滑”地层钻进,虽然采用软胎体钻头辅以人工研磨及孔内投硬岩屑等措施,绳索取心钻进仍显现出钻效低、回次进尺少等问题。
坚硬“打滑”的地层应用绳索取心液动潜孔锤钻进时,交频冲击荷载能使钻头唇面接触处的岩石表面光洁度降低,增加了钻头与岩石的摩擦力。同时,较粗的岩粉颗粒也促成了金刚石从胎体中出刃的条件,所以可显著提高钻速。
(3)在硬、脆、碎地层提高岩矿心采取率,延长回次进尺。液动锤在液动作用下启动工作,产生了高频冲击荷载。使钻具采心机构处于冲击振动作用下,岩心不易堵塞(即使产生堵塞也能较快解卡),减少岩心的自磨作用,从而提高岩矿心采取率,延长回次进尺,在破碎地层这种优点更为明显。
(4)使用绳索取心液动锤钻进可避免烧钻事故。经过两年多使用表明,使用液动潜孔锤绳索取心钻进,一旦发现泵压下降,冲击器不工作,要及时提钻检查,可避免烧钻事故。两年来,几乎无发生烧钻事故。
(5)绳索取心液动锤钻进减斜效果好。与回转钻进相比,钻压和转速较低,并且钻速高,有利于降低孔斜。
(6)绳索取心液动冲击回转钻进还可减轻绳索取心钻杆内壁结垢现象。
(二)金刚石钻头的优选研究
1.钻头试验选择的综合经济效益评价指标及优选方法
现场对比试验选择:根据目的和需要,选择不同技术参数的钻头在矿区或同一地层进行钻头适应性、时效、寿命等指标的对比试验,探讨各钻头参数对钻探成本效益的贡献率,求证合适的钻头性能参数或钻头品种。统计分析选择:通过对钻头历史使用资料进行统计分析,结合地层岩石可钻性合理选择钻头类型,从而更好地用好钻头,达到提高钻速、降低成本的目的。
2.S75钻头主要性能结构参数的优选成果
金刚石钻头的性能结构参数有镶嵌类型、胎体性能、金刚石的质量和粒度、金刚石浓度、水口形状及其数量和大小、底唇形状等。根据岩石的硬度、研磨性和完整度等岩层性质和其他技术条件,以高效、长寿、低耗、安全为标准,确定不同地层适用的孕镶金刚石钻头主要性能结构参数。
3.不同工况下钻头方案的确定
钻速与寿命在不同情况下对钻探综合效益的贡献率是不同的,研究确定了不同的工况的钻头方案:采用绳索取心钻进时,应有足够的钻头寿命,以延长提钻间隔,减少提钻次数和提钻时间;绳索取心钻进在深孔硬岩条件下,钻头方案为:在保证钻头寿命足够长的前提下,提高钻头的机械钻速;钻速低下时,如钻遇坚硬致密“打滑”地层,应以提高钻速为主;软硬互层频繁和破碎裂隙性地层,应主要考虑延长钻头寿命。
4.研究确定提高钻头寿命的技术对策
绳索取心钻进,一个提钻间隔内回次多、进尺长,钻遇多种不同性能岩层的可能性增多,要求钻头具有较广的地层适应性。主要对策:金刚石采用高强度、不同粒径混镶,增加钻头的适应性;提高工作层的高度;加强钻头的内外保径,如:增高内外侧刃高度,内外侧刃采用天然金刚石补强或采用高强度、较粗粒的单晶、聚晶体保径,钢体外焊合金颗粒等;增加胎体的耐冲击、耐磨性。
5.制定合理使用金刚石钻头的工作要点
要使金刚石钻头实现高效率、长寿命,合理使用它也是一个重要因素。合理使用钻头要注意以下几个问题:钻头要分组排队使用,根据设计孔深,按钻头内、外径尺寸,轮换使用:先用外径大、内径小的钻头;后用外径小、内径大的钻头。每次下入钻头与前一回次钻头直径差要小,当钻进8~9级岩石时,不大于0.1mm;当钻进10~12级岩石时,不大于0.05mm;选择好扩孔器,做好钻头与扩孔器及卡簧间配合;合理控制机械钻速,对软的、中硬粗颗粒的岩层,钻进速度快,岩粉量大,为了及时排除岩粉达到冷却钻头的目的,除增加冲洗液量外,要控制钻进速度。一般连续钻进时效不要超过5m/h,时效过高,易于造成钻头的非正常磨损,甚至会引起烧钻;避免钻头非正常损坏。
6.金刚石钻进技术参数的优选
钻压:确定合理的钻压是提高钻进效率,降低成本的重要措施之一。应根据岩石可钻性、研磨性、完整程度、钻头底唇面积、金刚石粒度、品级和数量选择钻压。
转速:转速是影响金刚石钻头钻速的重要因素。应根据岩石性质、钻孔结构及设备能力等因素选择转速,即考虑获得较高的钻速,也要保证合理的钻头寿命。
泵量:泵量的大小既必须保证冲洗液完成排除岩粉、冷却钻头等功能需求,也应能实现钻头金刚石自锐、防止复杂地层孔壁遭受冲刷破坏等要求。应视岩石性质、环状间隙、钻头类型、金刚石粒度、胎体性能等因素进行选择与适当调整。
泵压:泵压是一定泵量的情况下,冲洗液在特定钻进环境中的流动阻力。泵压的大小受钻杆内径及其密封、取心钻具过水断面、钻头水口、钻孔环状间隙、钻孔漏失情况等因素的影响,是反映孔内状况的敏感参数之一。钻进过程中,应设法降低泵压,保证钻进所需泵量的实现。
根据上述的原则、方法与思路,通过试验确定了马坑矿区绳索取心钻进技术参数组合(表4-2)和SYZX75绳索取心液动锤钻进最佳技术参数。
表4-2 绳索取心钻进技术参数组合经验推荐表
7.组合钻进技术试验
(1)试验任务的由来:石岩坑矿区ZK8321孔设计孔深900m,离已完工原水文观测孔8号钻孔15m。根据观8孔钻取的岩心,地层为泥岩、砂岩、粘土层等,其中大部分砂质泥岩(岩心极破碎,裂隙发育,采取率极低)。由于孔壁缩径、坍塌现象严重,观8孔孔深500m,施工时间达4个多月。为了加快勘探进度,提高钻进效率,经地质部门同意灰岩以上地层可不采取岩心,即孔深390m以上通过孔口取样判断地层情况。课题利用这一条件,开展组合钻进技术试验,设计试验方案(表4-3)。
表4-3 组合钻进技术试验设计方案表
(2)牙轮钻头钻具组合:按钟摆防斜原理组配牙轮钻头钻具:ϕ200mm牙轮钻头0.2m+5.15m钻具+2.56m泥粉管+钻铤+钻杆。钟摆钻具组合可利用钻具自身重力产生的钟摆力来实现降斜防斜目的。其防斜原理就是钻头以上、切点以下的一段钻铤犹如一个“钟摆”,钻头在这段钻铤的重力的横向分力——即钟摆力的作用下,靠向切削下侧井壁,从而起到减小井斜角的作用。
(3)试验过程:ZK8321孔于2011年6月19日开孔,0~13m为ϕ250mm金刚石钻头钻进,13m开始用ϕ200mm牙轮钻头钻进,浓泥浆护孔。钻进至孔深256.37m时,发生严重孔内事故,最后采取偏孔方法绕过事故钻具。牙轮钻头钻进进尺243.37m,用时384h,台月效率480m/台月,时效为1.15m/h。
(4)试验体会:采用牙轮钻头和优质浓泥浆全面钻进,钻进效率高,裸眼时间短,孔壁稳定。遇破碎、裂隙、全漏失地层,可将钻杆下入漏失孔段底部,用水灰比0.3~0.45水泥浆拌和细砂,从孔口将水泥浆倒入钻杆,由钻杆内管送到预定位置,对大裂隙地层堵漏效果显著。
(三)马坑铁矿护壁堵漏技术组合优化
由于福建铁矿区岩性极复杂、岩相变化极大、断裂与褶皱十分发育等原因,深孔钻探护壁是关键。经过多个钻孔的试验实践,研究制定了“优质泥浆+有效堵漏、旋喷水泥浆固结、多层次套管等复合护壁”技术。该技术作为马坑铁矿深孔钻探护壁原则与工艺要点(表4-4),有效保证了钻进的顺利进行。
表4-4 石岩坑铁矿地层与护壁堵漏对策选择表
1.高压旋喷水泥浆护壁技术的研究与应用
高压旋喷水泥浆固结护壁法技术是本研究形成的、国内首创的创新性成果。该技术吸收高压旋喷加固软土地基的精髓,通过机具的研制和工艺的研究,以高压旋喷水泥浆的方式,解决了常规护壁方法不能胜任的深部“断层泥”护壁难题,如:中、深部孔段钻遇松散、破碎、易水化分散坍塌等复杂夹层,钻孔漏失、泥浆护壁难且无法采用套管隔离情况下的护壁等。
2.旋喷水泥浆护壁的首次应用试验——马坑ZK7529孔
马坑矿区ZK7529孔设计孔深1200m,于2010年10月19日开孔,至2011年10月4日终孔,终孔孔深1299.19m。该孔于孔深960m后,钻遇三个“断层泥”破碎带:前两个断层采用套管隔离,第三个断层应用了水泥浆高压旋喷灌注法。具体护壁情况概述如下。
第一个断层带:孔深969.20~970.50m(中间夹0.2m基岩),地下水有径向流动。钻进时阻力大,提出后孔段即被细石充填。采用泥浆护壁无效后,多次采用常规方法灌注水泥,均未取上水泥心样,后扩孔下入ϕ89套管。
第二个断层:1049.60~1051.60m(ϕ77mm口径)。自1015.69~1051.60m中取岩心8m左右,出现坍塌;多次灌注水泥浆后,均因偏斜出新孔又屡次坍塌。于是扩孔至孔深1086.94m,下入ϕ73mm飞管。
第三个断层:1135.50~1138.50m(ϕ59mm),地层为强风化辉绿岩,风化严重的“断层泥”松散地层,胶结性差,怕水冲刷。由于受钻孔口径*,采用ϕ59钻具(钻杆为ϕ50外丝+ϕ50内丝)钻进。穿过该断层带后,出现严重坍塌、缩径现象,多次灌注水泥浆护壁无效。由于受口径*无法下入套管隔离复杂孔段,探讨应用了水泥浆高压旋喷灌注法,解决了护壁难题。
3.旋喷水泥浆护壁作业情况
(1)设备:XY-5型钻机,BW-250型泥浆泵,泥浆搅拌机等生产设备。
(2)护壁材料:采用42.5级普通硅酸盐水泥,水灰比0.45,加入适量促凝早强剂(NaCl)及速凝剂(三乙醇胺),浆液密度控制在1.6g/cm3。水泥用量15包,配制水泥浆量600L,替水量900L。
(3)旋喷钻具组合:ϕ50外丝钻杆+ϕ42内丝钻杆36m+喷具(喷具喷嘴3个,孔径5mm)+扫孔钻具。
(4)下入孔内预定位置后,先扫孔,扫至孔底后,送水畅通后,替入一定清水后开始送浆。
(5)压送水泥浆浆及替水量旋喷。当浆液自喷嘴喷射时,开动钻机,采用(表4-5)所列技术参数进行旋喷作业,直至浆液、替水压送完毕(开始送浆时,无泵压或泵压较低,待浆液出喷嘴时,泵压升至4~5MPa)。
表4-5 高压旋喷技术参数表
(6)注浆完毕,把钻杆提起一立根后,清洗钻杆,提钻。
(7)注浆24h后探水泥面,48h后扫孔。
4.旋喷水泥浆护壁技术的研究与应用体会
在马坑矿区5个钻孔的11处复杂地层孔段中,根据不同孔段的长短分别进行1次或多次旋喷水泥浆护壁,累计旋喷水泥浆作业33次,有7个孔段解决了护壁问题,4个孔段取得一定的护壁效果。通过该技术的研究与应用,有以*会。
(1)旋喷水泥浆与灌注水泥浆护壁方法的比较。旋喷水泥浆护壁的工艺方法、操作步骤与注意事项与灌注水泥浆护壁基本相同,但却能取得比灌注水泥浆更好更可靠的护壁效果,并在灌注水泥浆无法解决的已严重超径孔段、溶洞地层等获得成功护壁,主要是高压浆液从慢转、缓提的钻具侧向高速喷出(表4-6),使浆液不仅具有很大的冲击破土、渗入裂隙能力,充分置换泥浆和充填超径、溶洞空间,并与旋喷段孔内的岩土颗粒搅拌混合。
表4-6 旋喷水泥浆与灌注水泥浆护壁工艺的主要区别表
(2)旋喷水泥浆护壁技术的适用地层:通过多个钻孔的应用实践,旋喷水泥浆可以在复杂地层孔段形成有效的护壁“水泥套管”,解决采用泥浆护壁、普通方法灌注水泥均无效,以及受口径*也无法下入套管隔离复杂孔段的情况下的护壁难题。试验表明,该技术适用于下列地层护壁:中、深部孔段钻遇松散、破碎、易水化分散坍塌等复杂夹层,如:马坑矿区深部常见层厚1~5m不等“断层泥”;任意孔深的坍塌超径孔段、溶洞地层等有、无充填物中、小孔洞或溶洞群。
(3)存在的问题:综合旋喷水泥浆护壁技术的应用情况,由于存在以下主要问题,致使护壁效果不够理想,甚至造成旋喷水泥浆护壁的失败。
旋喷钻具喷嘴加工较为随意,达不到科学、合理;旋喷浆液压力不足;旋喷转速(n)和提升速度(υt)的组合不匹配,如:旋喷具提升过快等;替浆水量的控制不当;作业人员经验不足,关键环节操作不熟练,各岗位工作人员配合不密切。
5.提高旋喷水泥浆护壁效果的思考与探讨
针对旋喷水泥浆护壁技术应用存在的主要问题与不足,有必要进一步研究,持续完善该技术。为此,结合高压旋喷技术的相关研究成果,有以下设想和探讨。
(1)旋喷钻具喷嘴的设计优选——探寻高质量喷嘴:喷嘴是喷头的重要组成部分,喷嘴的水力学特性的好坏直接影响射流对地层的冲切效果,进而决定“水泥套管”直径的大小。为了研究喷嘴不同流道形状和不同长度的射流效果,选择3种喷嘴做了针对性的室内试验,并在分析对比试验数据和结果的基础上,得出以下的结论:收敛圆锥角喷嘴流道形式可减少喷嘴自身的压力降损失;当喷嘴长度与直径的比值为8~10,射流具有较好的喷射性能,射流流束稳定,冲击力强。
通过进一步研究,探寻符合旋喷水泥浆护壁要求的高质量喷嘴。一般地,高质量的喷嘴应该使射流具有如下的特性:扩散角小、等速核长、喷嘴的流量系数大(即射流通过喷嘴的能量损失小)。
(2)旋喷浆液适配机具研究:旋喷回转机构的研制,探讨解决旋喷转速不当问题。利用立轴式钻机最低转速进行旋喷回转,转速太快;以点动方式回转,转速不均。解决的设想是:研制可安装在孔口的、可无级调速的喷浆液压回转器;研制以钻机立轴为动力输入端的减速回转装置,将立轴的较高回转速度转换为所需的旋喷转速;旋喷高压注浆泵的研制或探寻。通过进一步研究,研制或探寻满足旋喷水泥浆护壁所需流量、泵压的注浆泵;配套浆液搅拌机、浆液除渣器等机具的研制。
(3)旋喷固结护壁浆液研究:理想的注浆材料应能满足护壁力学性能要求,浆液应具有良好的可注性、凝胶时间可任意调整、价格低廉、无毒、无污染、施工方便等。通过进一步的研究,选择合适的注浆材料及其配合比。初步考虑以下两个途径:水泥浆及其外加剂的选择。纯水泥浆液系无机质硅酸盐材料,无毒无公害,长时间性能稳定且价格低廉,应优先选用。根据工程需要,可通过试验在水泥浆液中加入适量的速凝、悬浮或防冻等外加剂及掺和料,保证浆液质量和低成本;化学浆液的选择与应用。化学浆液具有一些独特性能,如浆液黏度低、可注性好、凝胶时间可准确控制等,但化学浆液价格比较昂贵,且往往有毒性和污染环境,不利于环保。由于地质勘查钻孔孔距大、孔径小,护壁所需浆液量不多,化学浆液的较高价格与所含毒性对钻探成本及环境影响不大。因此,化学浆液也是值得选择与应用的护壁浆液。
综上所述,旋喷水泥浆护壁研究成果在福建龙岩马坑铁矿深部复杂地层护壁获得成果后,先后在福建煤田、湖北放马山等矿区多个钻孔推广应用,表明该技术可以在任意孔深的坍塌超径孔段、软弱松散地层等形成可靠、有效的“水泥套管”护壁。这一成果,为小口径深孔复杂地层护壁增添了一项有效的护壁技术和手段。目前,该技术已成为机台深孔钻探主要和必备的护壁手段。
(四)套管钻进技术在马坑铁矿复杂地层中的应用试验
BH114套管钻进技术是中国地质科学院成都探矿工艺所研发的钻探新成果。该技术通过利用外管代替绳索钻杆传递钻压和扭矩驱动孔内套管取心钻具回转钻进,在不提钻情况下进行绳索取心、检查或更换孔底主副钻头,有效减少起钻次数,避免频繁取下钻导致复杂地层孔壁不稳定及其引发的孔内事故,降低劳动强度,改善施工环境和促进安全生产。2012年9月8日,福建省第八地质大队在石岩坑矿区ZK9501孔进行BH114套管钻进技术试验(自孔深25.58m开始至186m),不仅为BH114套管钻进技术的进一步完善提供了宝贵的试验数据,达到预期目的。
现场试验情况:2012年9月12日至2012年9月28日,在马坑矿区ZK9501孔25.84~183.18m孔段进行ϕ114套管钻进技术生产试验,试验进尺157.34m,并下入ϕ114套管181.70m,实现了随钻下套管隔离保护孔壁。