发布网友 发布时间:2023-04-12 01:13
共1个回答
热心网友 时间:2023-09-29 03:47
f(x)=f(0)+f`(0)x就是一阶。
f(x)=f(0)+f`(0)x+f``(0)x^2/2!就是二阶泰勒展开式。
简单的说 多项式存在f(n个`)(0)x^(n) / n!就是n阶泰勒展开式。
最后带上个余项,对于展开n项的泰勒式 皮雅诺余项是写o(x^n)。
导数决定了函数的形状。如果有四阶导数大于0,也能得到不带余项的三阶展开式大于0。但是当奇数次导数大于0,就不一定了。
f(x)在x0处的切线方程为 y=f(x0)+f'(x0)(x-x0)。
因为f''(x)>0,函数为凹函数,所以函数图像总是在切线的上方。
f(x)>=y(x)=f(x0)+f'(x0)(x-x0)。
泰勒公式
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数*近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。
泰勒公式的几何意义是利用多项式函数来*近原函数,由于多项式函数可以任意次求导,易于计算,且便于求解极值或者判断函数的性质,因此可以通过泰勒公式获取函数的信息,同时,对于这种近似,必须提供误差分析,来提供近似的可靠性。