发布网友 发布时间:2023-05-03 12:44
共1个回答
热心网友 时间:2023-10-20 05:37
定积分的乘除法则:
定积分有分步积分,公式∫udv = uv - ∫v
没有什么乘除法则
定积分没有乘除法则,多数用换元积分法和分部积分法。
换元积分法就是对复合函数使用的:
设y = f(u),u = g(x)
∫ f[g(x)]g'(x) dx = ∫ f(u)
换元积分法有分第一换元积分法:设u = h(x), = h'(x) dx
和第二换元积分法:即用三角函数化简,设x = sinθ、x = tanθ及x = secθ
还有将三角函数的积分化为有理函数的积分的换元法:
设u = tan(x/2),dx = 2/(1 + u²) ,sinx = 2u/(1 + u²),cosx = (1 - u²)/(1 + u²)
分部积分法多数对有乘积关系的函数使用的:
∫ uv' dx
= ∫ udv
= uv - ∫ v
= uv - ∫ vu'
其中函数v比函数u简单,籍此简化u。是由导数的乘法则(uv)' = uv' + vu'推导过来的。
有时候v' = 1的,例如求∫ lnx dx、∫ ln(1 + x) dx等等。
还有个有理积分法:将一个大分数*为几个小分数。
例如1/(x² + 3x + 2) = 1/((x + 1)(x + 2)) = 1/(x + 1) - 1/(x + 2)
拓展资料:
定积分:
定积分是以R为半径,θ为积分变元,计算曲线周长的、面积的积分。
曲线的周长定积分为,曲线的面积定积分为。
设曲线 [1] ρ=R在区间[θ1,θ2]上非负连续,当dθ足够小时,其角度对应的曲线长度为扇形曲线的长度,故曲线周长积分变量为Rdθ,当dθ足够小时,曲线面积近似为直角三角形面积,等于一边长度乘以高,故曲线面积积分变量为1/2R×Rdθ,由此得到曲线周长面积的定积分。