二次根式定义,性质,公式,法则
发布网友
发布时间:2022-04-23 19:54
我来回答
共4个回答
热心网友
时间:2022-04-27 11:35
一、定义
如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式。
即:若x^2=a,则±√a叫做a的平方根,记作x=±√a。其中a叫被开方数。其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:
被开方数可以是数,也可以是代数式。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二、性质
1、任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是√a,则a的另一个平方根为﹣√a;最简形式中被开方数不能有分母存在。
2. 零的平方根是零;
3. 负数的平方根也有两个,它们是共轭的。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示 。
三、法则
加减法
1、同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 化简:根号12等于4的根号3
2、合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
乘除法
二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根式。
扩展资料:
一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
参考资料来源:百度百科-二次根式
热心网友
时间:2022-04-27 12:53
二次根式的定义:二次根式的性质:a(a≥
0)-a(a≤0)==∣a∣===计算下列式子.并观察他们之间有什么联系?能用字母表示你所发现的规律吗?一、二次根式乘法法则:一般地有二次根式与二次根式相乘,等于各被开数的积的算术平方根。扩充:例题1
计算:(1)(2)解:(3)(a≥0,b≥0)二次根式的乘法:利用这个等式可以化简一些根式。试一试:例题2
化简:(1)(3)解:(1)(2)化简:4、计算:化简二次根式的步骤:1.将被开方数尽可能分解成几个平方数.根式运算的结果中,被开方数应不含能开得尽方的因数或因式
二次根式的乘法和除法
1.积的算数平方根的性质
列如:√ab=√a·√b(a≥0,b≥0)
2.
乘法法则
列如:√a·√b=√ab(a≥0,b≥0)
二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.除法法则
√a÷√b=√a÷b(a≥0,b>0)
二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
4.有理化根式。
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
编辑本段二次根式的加法和减法
1
同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2
合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
例如:2√5+√5=3√5
4、有括号时,要先去括号
热心网友
时间:2022-04-27 14:27
一般地,形如√a(a≥0)的代数式叫做二次根式,其中,a 叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a不是二次根式(在一元二次方程求根公式中,若根号下为负数,则无实数根)
定义性质和概念编辑
如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式
即:若
,则x叫做a的平方根,记作x=
。其中a叫被开方数。其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:
被开方数可以是数 ,也可以是代数式。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
性质
1.任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是
,则a的另一个平方根为﹣
;最简形势中被开方数不能有分母存在。
2.零的平方根是零,即
;
3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
运算法则编辑
乘除法
1.积的算数平方根的性质
(a≥0,b≥0)
2. 乘法法则
(a≥0,b≥0)
二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.除法法则
(a≥0,b>0)
二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
热心网友
时间:2022-04-27 16:19
二次根式
I.定义:
一般地,形如√ā(a≥0)的代数式叫做二次根式.当a≥0时,√ā表示a的算术平方根当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)
II.二次根式√ā的范围
√ā是一个非负数。即√ā≥0。
当a>0时,√ā表示a的算术平方根。
当a=0时,√ā表示0的算术平方根,即0。
III.计算公式:
1.(√ā)??=a(a≥0)
2.当a>0时,√ā??=a
当a=0时,√ā??=0
当a<0时,√ā??=-a
3. √ā×√ō=√āō(a≥0, o≥0)
√ā÷√ō=√(ā÷ō) (a≥0, o≥0)
IV.最简二次根式
条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因式。
V.二次根式的加减
先将二次根式各项化为最简二次根式,再把被开方数相同的根式合并。