发布网友 发布时间:2023-04-25 22:49
共1个回答
热心网友 时间:2023-10-16 23:39
20世纪初年以前,一般将全部数学分为三大基本分支:分析学、几何学和代数学。当然,对于现代数学,已难于做如此的概括。象微分方程和概率论等学科,它们的创立都与分析密切相关,但由于它们各有独特的研究对象,从而发展了各自的庞大系统,不能继续将它们归属于分析学。一般而论,现代分析可分为实分析、复分析和包括泛函分析在内的抽象分析三大部分,它的研究对象已不限于函数,研究方法也日益综合。
分析这个学科名称,大约是由牛顿(Newton)最早引入数学的,因当时微积分被看做代数的扩张,“无穷”的代数,而“分析”与“代数”同义。今天它所指虽然更广,但仍然只是对所含学科方法上共同特点的概括,而且愈来愈不容易与几何、代数的方法完全分清了。
分析学中最古老和最基本的部分是数学分析。它是在17世纪为了解决当时生产和科学提出的问题,经过许多数学家的努力,最终由牛顿和莱布尼茨(Leibniz)创立的。但是为分析建立严格逻辑基础的工作却迟至19世纪方才完成。此后,数学分析才成为一个完整的数学学科。数学分析是最早系统研究函数的学科,它所研究的虽说基本上只是一类性质相当好的函数——区间上的连续函数,但无论在理论上或应用方面至今都有重要意义。在理论方面,数学分析是分析学科的共同基础,也是它们的发源地。现代分析的诸多分支中,有一些在其发展初期曾经是数学分析的一部分(例如变分法、傅里叶分析以至复变函数论等),而另一些则是在数学分析的完整体系建立以后,由于各种需要,在对数学分析中的某些问题的深入研究和拓广之中发展起来的,像实变函数论、泛函分析和流形上的分析就属于这种情况。
19世纪末到20世纪初,由于某些数学分支(例如傅里叶分析)和物理等学科发展的需要,不但促使数学分析中函数可积的概念逐步明确,还进一步要求将积分推广到更广的函数类上去,希望积分运算更加灵活方便。同时,在对数学分析中各个基本概念之间的关系的继续探讨中(例如,微分和积分互为逆运算在一般意义上是否成立),人们也感到必须突破数学分析的*。
在这方面,20世纪初,由勒贝格(Lebesgue)提出的积分理论有重大意义,而实变函数论的中心内容就是勒贝格积分的理论。作为黎曼积分的推广,勒贝格积分不仅可积函数类广,还具有可数可加性等良好性质,积分号下求极限的条件也较宽松,它的理论已经发展得充分完备,因而更适合数学各分支及物理的需要。由于勒贝格可积函数的空间(函数类)的完备性,使它在数学理论上占据黎曼积分所不可能有的重要地位。实变函数论同数学分析一样,也研究函数的连续性、可微性、可积性这些基本性态,但由于应用了集合论的方法,使它有可能研究一般点集上的函数,从而研究的结果比数学分析更广、更完善。因此,实变函数论也成为分析学各分支(特别是泛函分析等近代分支)的共同基础之一。在关于微分和积分是否互为逆运算的问题上,勒贝格积分的结果就比黎曼积分情形进了一步。但是,为了彻底解决这个问题,后来又有人提出过多种更广的积分理论,例如,当儒瓦积分和佩龙积分,最后由广义当儒瓦积分(1916年)对前述问题作了肯定的回答。然而,这些积分除了在特定的理论问题上有重要意义外,远不如勒贝格积分普遍适用。勒贝格积分是建立在勒贝格测度的基础之上的,后者向抽象方面进一步发展,又促使对于测度的系统研究形成独立的学科,这就是测度论。测度是面积、体积概念的推广,它和积分概念始终紧密相联,测度论的思想和理论在现代分析中是十分重要和很有用的。