发布网友 发布时间:2023-04-28 08:35
共2个回答
热心网友 时间:2023-10-27 07:00
极限不存在有三种情况:
1、极限为无穷,很好理解,明显与极限存在定义相违。
2、左右极限不相等,例如分段函数。
3、没有确定的函数值,例如lim(sinx)从0到无穷。
建立的概念
可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。
(3)函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列 的极限来定义的。
(5)广义积分是定积分其中 为,任意大于 的实数当 时的极限,等等。
热心网友 时间:2023-10-27 07:01
极限不存在什么意思?热心网友 时间:2023-11-18 07:58
极限不存在有三种情况:
1、极限为无穷,很好理解,明显与极限存在定义相违。
2、左右极限不相等,例如分段函数。
3、没有确定的函数值,例如lim(sinx)从0到无穷。
建立的概念
可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。
(3)函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列 的极限来定义的。
(5)广义积分是定积分其中 为,任意大于 的实数当 时的极限,等等。
热心网友 时间:2023-11-18 07:58
极限不存在什么意思?