博弈论是模糊数学模型吗?
发布网友
发布时间:2023-05-08 15:27
我来回答
共2个回答
热心网友
时间:2024-12-03 15:37
定义
在1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力*在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如模糊拓扑学、不分明线性空间、模糊代数学、模糊分析学、模糊测度与积分、模糊群、模糊范畴、模糊图论、模糊概率统计、模糊逻辑学等。其中有些领域已有比较深入的研究。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面,在各个领域中发挥看非常重要的作用,并已获得巨大的经济效益。编辑本段产生现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在于它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力*在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属
控制论模型
于待发展的范畴。在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。编辑本段研究内容现代计算机的计算速度及贮存能力几乎达到了无与伦比的程度,它不仅可以解决复杂的数学问题,还可以参与控制航天飞机等。既然计算机有如此威力,那么为什么在判断和推理方面有时不如人脑呢? 美国加利福尼亚大学Zadeh(扎德)教授仔细的研究了这个问题,以至于她在科研工作中 经常回旋与“人脑思维”、“大系统”与“计算机”的矛盾之中。1965年,他发表了论文《模糊集合论》“隶属函数”这个概念来描述现象差异中的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。编辑本段应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊
智能化聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。编辑本段产生历史模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支。它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具。它既可用于“硬”科学方面,又可用于“软”科学方面。 模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921--)教授所创立。他于1965年发表了题为《模糊集合论》(《FuzzySets》)的论文,从而宣告模糊数学的诞生。L.A.扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能象人脑那样进行灵活的思维与判断问题。尽管计算机记忆超人,计算神速,然而当其面对外延不分明的模糊状态时,却“一筹莫展”。可是,人脑的思维,在其感知、辨识、推理、决策以及抽象的过程中,对于接受、贮存、处理模糊信息却完全可能。计算机为什么不能象人脑思维那样处理模糊信息呢?其原因在于传统的数学,例如康托尔集合论(Cantor′sSet),不能描述“亦此亦彼”现象。集合是描述人脑思维对整体性客观事物的识别和分类的数学方法。康托尔集合论要求其分类必须遵从形式逻辑的排中律,论域(即所考虑的对象的全体)中的任一元素要么属于集合A,要么不属于集合A,两者必居其一,且仅居其一。这样,康托尔集合就只能描述外延分明的“分明概念”,只能表现“非此即彼”,而对于外延不分明的“模糊概念”则不能反映。这就是目前计算机不能象人脑思维那样灵活、敏捷地处理模糊信息的重要原因。为克服这一障碍,L.A.扎德教授提出了“模糊集合论”。在此基础上,现在已形成一个模糊数学体系。模糊数学产生的直接动力,与系统科学的发展有着密切的关系。在多变量、非线性、时变的大系统中,复杂性与精确性形成了尖锐的矛盾。L.A.扎德教授从实践中总结出这样一条互克性原理:“当系统的复杂性日趋增长时,我们作出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特性。”这就是说,复杂程度越高,有意义的精确化能力便越低。复杂性意味着因素众多,时变性大,其中某些因素及其变化是人们难以精确掌握的,而且人们又常常不可能对全部因素和过程都进行精确的考察,而只能抓住其中主要部分,忽略掉所谓的次要部分。这样,在事实上就给对系统的描述带来了模糊性。“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。”因此,必须寻找到一套研究和处理模糊性的数学方法。这就是模糊数学产生的历史必然性。模糊数学用精确的数学语言去描述模糊性现象,“它代表了一种与基于概率论方法处理不确定性和不精确性的传统不同的思想,……,不同于传统的新的方*”。它能够更好地反映客观存在的模糊性现象。因此,它给描述模糊系统提供了有力的工具。L.A.扎德教授于1975年所发表的长篇连载论著《语言变量的概念及其在近似推理中的应用》(《TheConceptofaLinguisticVariable&ItsApplicationtoApproximateReasoning》),提出了语言变量的概念并探索了它的含义。模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面。语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理。人类语言表达主客观模糊性的能力特别引人注目,或许从研究模糊语言入手就能把握住主客观的模糊性、找出处理这些模糊性的方法。有人预言,这一理论和方法将对控制理论、人工智能等作出重要贡献。模糊数学诞生至今仅有22年历史,然而它发展迅速、应用广泛。它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。在图象识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。把模糊数学理论应用于决策研究,形成了模糊决策技术。只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。编辑本段应用前景模糊数学是研究现实中许多界限不分明问题的一种数学工具,其基本概念之一是模糊集合。利用模糊数学和模糊逻辑,能很好地处理各种模糊问题。模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。模糊数学这种相当新的数学方法和思想方法,虽有待于不断完善,但其应用前景却非常广阔。编辑本段模糊数学研究[1]模糊数学研究 是一本关注运筹学与模糊学领域最新进展的国际中文期刊,由汉斯出版社发行,主要刊登数学规划、数学统筹、模糊信息与工程、模糊管理学相关内容的学术论文和成果评述。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论运筹与模糊学领域内不同方向问题与发展的交流平台。运筹学研究 研究领域: · 数学规划· 图论组合优化· 随机模型· 决策与对策(博弈)· 金融数学· 统筹论· 军事运筹· 计算机仿真· 数据挖掘· 统计与预测学· 模糊数学与系统· 启发式演算法· 模糊控制· 智能、软计算· 可靠性· 管理与模糊管理学· 模糊信息与工程编辑本段模糊数学在中国在美国,日本,法国等世界数学强国相继研究模糊数学,并取得一些阶段性的进展的同时,1976年中国开始注意模糊数学的研究,世界著名模糊学家考夫曼(A.kaufman,法国)、山泽(E.SanchZ.法国)、营野(日本)和美籍华人P.P.Z等先后来华讲学,推动了我国模糊数学的高速发展,很快就拥有一支较强的研究队伍。1980年成立了中国模糊集与系统协会。1981年,创办《模糊数学》杂志,1987年,创办了《模糊系统与数学》杂志。还出版过大量的颇有价值的论著。例如:汪培庄教授所著《模糊集与随机集落影》,《模糊集合论及其应用》,张文修教授编著的《模糊数学基础》等。1988年我国汪培庄教授指导几位博士生研制成功了一台模糊推理机-----分立元件样机。它的推理速度为1500万次/秒,这表明中国在突破模糊信息处理难关方面迈出重要一步。中国科研人员在Fuzzy领域中取得了卓越成就。何新贵院士将Fuzzy方面的论文在国内外权威杂志上发表。这标志着中国研究已经达到国内外先进水平。至此,中国已成为全球四大模糊数学研究中心之一。(美国,西欧,中国,日本)2005年,是一个值得中国所有模糊研究人员和学者庆祝的一个丰收年,在这个丰收年里有两件值得庆祝的大事。一,经国际模糊系统协会(IFSA)专家评审,最终确定授予中国四川大学副校长刘应明院士“FuzzyFellow奖”。“FuzzyFellow奖”是模糊数学领域的最高奖项,专门授予得到国际公认的,在模糊数学领域做出杰出贡献的科学家。二,2005年8月20日,中国运筹会Fuzzy信息与工程分会正式成立。Fuzzy信息与工程分会成立,是隶属于全国两大数学方向的一级学会之一------中国运筹会,表明Fuzzy数学在中国已取得了应有的地位,尤其是Fuzzy数学的创始人扎德教授的出席会议,中国运筹学会理事长,中国科学院数学与系统科学研究院副院长袁亚湘教授和广州大学校长廖建设教授为学会揭牌,这给成立大会增添的极大的光彩。也极大的鼓舞了全国Fuzzy研究工作者。Fuzzy信息与工程分会的宗旨:在完善和加强Fuzzy集理论研究的同时,更侧重于Fuzzy技术的应用和Fuzzy产品的开发研究。注:1、广州大学校长为庾建设。2、中国运筹会Fuzzy信息与工程分会首任理事长为广州大学曹炳元教授。
热心网友
时间:2024-12-03 15:38
博弈论的概念
博弈论又被称为对策论(),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支,也是的一个重要学科。
博弈论的发展
博弈论思想古已有之,我国古代的就不仅是一部军事著作,而且算是最早的一部博弈论专著。博弈论最初主要研究象棋、、*中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺意曼和摩根斯坦共著的划时代巨著将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。谈到博弈论就不能忽略博弈论天才纳什,纳什的开创性论文《n人博弈的均衡点》(1950),《非》(1951)等等,给出了纳什均衡的概念和均衡存在定理。 此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的的学科。
博弈论的基本概念
博弈要素
(1)局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。
(2)策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。
(3)得失:一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。
(4)对于博弈参与者来说,存在着一博弈结果
(5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。
纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。
这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。
对于也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。
有了上述定义,就立即得到纳什定理:
任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。
纳什定理的严格证明要用到理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。
纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。
但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。
塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。
博弈的类型
(1)合作博弈——研究人们达成合作时如何分配合作得到的收益,即收益分配问题。
(2)非合作博弈——研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。
(3)完全信息不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完全信息;反之,则称为不完全信息。
(4)静态博弈和动态博弈
静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。
动态博弈:指双方的的行动有先后顺序并且后行动者可以知道先行动者的策略。
财产分配问题和夏普里值(Shapley value)
考虑这样一个合作博弈:a、b、c、投票决定如何分配100万,他们分别拥有50%、40%、10%的权力,规则规定,当超过50%的票认可了某种方案时才能通过。那么如何分配才是合理的呢?按票力分配,a50万、b40万、c10万c向a提出:a70万、b0、c30万b向a提出:a80万、b20万、c0……
权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的“关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。
夏普里值:在各种可能的联盟次序下,参与者对联盟的之和除以各种可能的联盟组合。
次序 abc acb bac bca cab cba
关键加入者 a c a c a b
由此计算出a,b,c的夏普里值分别为4/6,1/6,1/6
所以a,b,c应分别获得100万的2/3,1/6,1/6。
博弈论的意义
弈论的和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。
基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、*学、社会学等等,被各门社会科学所应用。
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的问题求出最优解、从而为在理论上指导实践提供可能性呢?现代由匈牙利大数学家冯·于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。