发布网友 发布时间:2022-08-12 01:22
共1个回答
热心网友 时间:2024-07-28 10:03
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
1、已知类条件概率密度参数表达式和先验概率。
2、利用贝叶斯公式转换成后验概率。
3、根据后验概率大小进行决策分类。
他对统计推理的主要贡献是使用了逆概率这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是1763年被发现后提出来的:
假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)即是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。