发布网友 发布时间:2022-08-06 20:20
共1个回答
热心网友 时间:2024-11-19 17:29
由于稀有气体无极性且相对分子质量较小,因而它们的分子间作用力非常弱,所以熔点和沸点非常低。它们在标准状况下都是单原子气体,甚至比一般固体元素原子量更大的氙、氡等也是这样。氦与其它稀有气体元素相比,具有一些独特的性质:它的沸点和熔点低于其它任何已知的物质;它是唯一的一种表现出超流性的元素;它是唯一不能在标准状况下冷却凝固的元素-必须在0.95K(−272.200℃)的温度施加25个大气压(2,500kPa)的压力,才能使它凝固。到氙为止的稀有气体都有多个稳定的同位素,氡则没有稳定同位素。它寿命最长的同位素222Rn的半衰期也只有3.8天,氡会衰变为氦和钋,最终衰变产物则是铅。 稀有气体原子像大部分族中的原子一样,由于电子层数的增加,原子半径随着周期的增加而增加。原子的大小与影响物质的许多性质。例如,电离能随着半径的增加而减少,因为较重的稀有气体中的价电子离核较远,因此更容易脱离原子核的束缚。稀有气体的电离能是每一个周期中最大的,这反映了它们的电子排布的稳定性,也导致了它们的化学性质不活泼。然而,有些较重的稀有气体的电离能较小,足以与其它元素和分子相比。巴特利特正是看到了氙的第一电离能与氧分子相似,而尝试用六氟化铂来把氙氧化,因为六氟化铂的氧化性非常强,足以把氧气氧化。稀有气体不能得到一个电子,而形成稳定的阴离子;也就是说,它们的电子亲合能是负值
稀有气体的宏观物理性质主要来自原子之间的弱范德华力。原子之间的吸引力随着原子大小的增加而增加,由于极化性的增加以及电离能的减少。这就是在第18族从上到下,原子半径和原子间力增加,导致熔点、沸点、汽化热和溶解度增加的原因。密度的增加则是由于原子序数的增加。 稀有气体在标准状况下几乎是理想气体,但它们与理想气体状态方程的偏差提供了分子间作用力的研究的重要线索。兰纳-琼斯势,通常用来模拟分子间的作用,由约翰·兰纳-琼斯根据氩的实验数据提出,那时量子力学还没有发展到可以作为从第一性原理(即量子化学从头计算)理解分子间作用力的工具。这些作用的理论分析变得易于处理,因为稀有气体是单原子,且原子是球形,这意味着原子之间的作用与方向无关(各向同性) 。 稀有气体的化学性质是由它的原子结构所决定的。
除氦以外,稀有气体原子的最外电子层都是由充满的ns和np轨道组成的,它们都具有稳定的8电子构型。稀有气体的电子亲合势都接近于零,与其它元素相比较,它们都有很高的电离势。因此,稀有气体原子在一般条件下不容易得到或失去电子而形成化学键。表现出化学性质很不活泼,不仅很难与其它元素化合,而且自身也是以单原子分子的形式存在,原子之间仅存在着微弱的范德华力(主要是色散力)。
稀有气体的熔、沸点都很低,氦的沸点是所有单质中最低的。它们的蒸发热和在水中的溶解度都很小,这些性质随着原子序数的增加而逐渐升高。
稀有气体的原子半径都很大,在族中自上而下递增。应该注意的是,这些半径都是未成键的半径,应该仅把它们与其它元素的范德华半径进行对比,不能与共价或成键半径进行对比。
氦是所有气体中最难液化的,温度在2.2K以上的液氦是一种正常液态,具有一般液体的通性。温度在2.2K以下的液氦则是一种超流体,具有许多反常的性质。例如具有超导性、低粘滞性等。它的粘度变得为氢气粘度的百分之一,并且这种液氦能沿着容器的内壁向上流动,再沿着容器的外壁往下慢慢流下来。这种现象对于研究和验证量子理论很有意义 。 性质氦氖氩氪氙氡密度(g/L)0.17860.90021.78183.7085.8519.97沸点(K)4.427.387.4121.5166.6211.5熔点(K)0.9524.783.6115.8161.7202.2沸点和熔点的差距 (K)3.452.63.85.74.99.3汽化热(kJ/mol)0.081.746.529.0512.6518.120°C时在水中的溶解度(cm/kg)8.6110.533.659.4108.1230原子序数21018365486原子半径(pm)130160192198218–电离能(kJ/mol)237220801520135111701037电负性4.164.793.242.972.58-