已知实数a,b满足a²+b²+ab=1,t=ab²-a²-b²,那么t的取值范围
发布网友
发布时间:2022-07-19 06:51
我来回答
共2个回答
热心网友
时间:2023-10-14 17:24
a^2+ab+b^2=1
转换a^2+2ab+b^2-ab=1或a^2-2ab+b^2+3ab=1得
(a+b)^2-ab=1
且(a-b)^2+3ab=1
因为(a+b)^2或(a-b)^2均≥0
所以可以得出-1≤ab≤1/3
t=ab-a^2-b^2,
由a^2+ab+b^2=1代入上式
t=2ab-1
ab=(t+1)/2
-1≤ab≤1/3
所以-3≤t≤-1/3
热心网友
时间:2023-10-14 17:25
在式子中,把a²+b²=1-ab带入即可解答