微积分中的常数变易法是什么原理?
发布网友
发布时间:2022-07-23 15:18
我来回答
共1个回答
热心网友
时间:2024-12-02 10:09
常数变易法是求解微分方程的一种很重要的方法,常应用于一阶线性微分方程的求解。数变易法中,将常数C换成u(x)就可以得到非齐次线性方程的通解。
用u(x)代替C后,既能满足齐次方程,又能产出非齐次项,故一定可以找到合适的u(x),使得它由微分算子运算后得到原微分方程的非齐项,因此原微分方程的通解都可以写成y2=u(x)y1(x);
(y1(x)是与它相应的齐次方程的通解)