问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

二次函数相关知识点全概括

发布网友 发布时间:2022-04-22 19:02

我来回答

1个回答

热心网友 时间:2022-05-31 14:41

二次函数 定义与定义表达式编辑本段  一般地,自变量x和因变量y之间存在如下关系:
  y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
  重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
  二次函数表达式的右边通常为二次。
  x是自变量,y是x的二次函数 二次函数的三种表达式编辑本段  ①一般式:y=ax2+bx+c(a,b,c为常数,a≠0)
  ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)2+k
  ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1 2)(x-x22)
  以上3种形式可进行如下转化:
  ①一般式和顶点式的关系
  对于二次函数y=ax2+bx+c,其顶点坐标为[(-b/2a),(4ac-b2)/4a],即
  h=-b/2a=(x1 +x2)/2
  k=(4ac-b2)/4a
  ②一般式和交点式的关系
  x1,x2=[-b±√(b2_4ac)]/2a(即一元二次方程求根公式) 二次函数的图像编辑本段  在平面直角坐标系中作出二次函数y=x2的图像,
  可以看出,二次函数的图像是一条永无止境的抛物线。 抛物线的性质编辑本段  1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
  对称轴与抛物线唯一的交点为抛物线的顶点P。
  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
  2.抛物线有一个顶点P,坐标为P ([-b/2a ,(4ac-b2)/4a ]
  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。
  3.二次项系数a决定抛物线的开口方向和大小。
  当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
  |a|越大,则抛物线的开口越小。
  4.一次项系数b和二次项系数a共同决定对称轴的位置。
  当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,若要b/2a大于0,则a、b要同号
  当a与b异号时(即ab<0),对称轴在y轴右侧。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,若要b/2a小于0,则a、b要异号
  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
  5.常数项c决定抛物线与y轴交点。
  抛物线与y轴交于(0,c)
  6.抛物线与x轴交点个数
  Δ= b2-4ac>0时,抛物线与x轴有2个交点。
  Δ= b2-4ac=0时,抛物线与x轴有1个交点。
  Δ= b2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
  当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b<sup>2</sup>/4a}相反不变
  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0)
  7.定义域:R
  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,+∞);②[t,+∞)
  奇偶性:偶函数
  周期性:无
  解析式:
  ①y=ax2+bx+c[一般式]
  ⑴a≠0
  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
  ⑶极值点:(-b/2a,(4ac-b2)/4a);
  ⑷Δ=b2-4ac,
  Δ>0,图象与x轴交于两点:
  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
  Δ=0,图象与x轴交于一点:
  (-b/2a,0);
  Δ<0,图象与x轴无交点;
  ②y=a(x-h)2+t[配方式]
  此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a; 二次函数与一元二次方程编辑本段   特别地,二次函数(以下称函数)y=ax2+bx+c,
  当y=0时,二次函数为关于x的一元二次方程(以下称方程),
  即ax2+bx+c=0
  此时,函数图像与x轴有无交点即方程有无实数根。
  函数与x轴交点的横坐标即为方程的根。
  1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
  解析式
  y=ax2   y=ax2+K
  y=a(x-h)2
  y=a(x-h)2+k
  y=ax2+bx+c
  
  顶点坐标
  (0,0)
  (0,K)
  (h,0)
  (h,k)
  (-b/2a,[4ac-b2]/4a)
  
  对 称 轴
  x=0
  x=0
  x=h
  x=h
  x=-b/2a
  
  当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到,
  当h<0时,则向左平行移动|h|个单位得到.
  当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
  当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
  因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
  2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a).
  3.抛物线y=ax2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
  4.抛物线y=ax2+bx+c的图象与坐标轴的交点:
  (1)图象与y轴一定相交,交点坐标为(0,c);
  (2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
  当△=0.图象与x轴只有一个交点;
  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
  5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b2)/4a.
  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
  6.用待定系数法求二次函数的解析式
  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
  y=ax2+bx+c(a≠0).
  (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).
  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).
  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现. 中考典例编辑本段   1.(北京西城区)抛物线y=x2-2x+1的对称轴是( )
  (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2
  考点:二次函数y=ax2+bx+c的对称轴.
  评析:因为抛物线y=ax2+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.
  另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A.
  2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:
  甲:对称轴是直线x=4;
  乙:与x轴两个交点的横坐标都是整数;
  丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
  请你写出满足上述全部特点的一个二次函数解析式: .
  考点:二次函数y=ax2+bx+c的求法
  评析:设所求解析式为y=a(x-x1)(x-x2),且x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2). 『因为顶点式a(x+x1)(x+x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2
  ∵抛物线对称轴是直线x=4,
  ∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,
  即:x2- x1= ②
  ①②两式相加减,可得:x2=4+,x1=4-
  ∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。
  当ax1x2=±1时,x2=7,x1=1,a=±
  当ax1x2=±3时,x2=5,x1=3,a=±
  因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)
  即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3
  说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。
  5.( 河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )
  A、6 B、4 C、3 D、1
  考点:二次函数y=ax2+bx+c的图象及性质的运用。
  评析:由函数图象可知C点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。
  图13-28 
  6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。
  (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
  (2)第10分时,学生的接受能力是什么?
  (3)第几分时,学生的接受能力最强?
  考点:二次函数y=ax2+bx+c的性质。
  评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0<x3<0,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:
  解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9
  所以,当0<x<13时,学生的接受能力逐步增强。
  当13<x<30时,学生的接受能力逐步下降。
  (2)当x=10时,y=-0.1(10-13)2+59.9=59。
  第10分时,学生的接受能力为59。
  (3)x=13时,y取得最大值,
  所以,在第13分时,学生的接受能力最强。
  9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
  (1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
  (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);
  (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
  解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克), 所以月销售利润为:(55–40)×450=6750(元).
  (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克 而每千克的销售利润是:(x–40)元,所以月销售利润为:
  y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),
  ∴y与x的函数解析式为:y =–10x2+1400x–40000.
  (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,
  即:x2–140x+4800=0,
  解得:x1=60,x2=80.
  当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:
  40×400=16000(元);
  当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:
  40×200=8000(元);
  由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.
  19.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值 元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元).
  (1)求y关于x的函数关系式;
  (2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关?
  20.下图1为义乌市2005年,2006年城镇居民人均可支配收入构成条形统计图。图2为义乌市2006年城镇居民人均可支配收入构成扇形统计图,城镇居民个人均可支配收入由工薪收入、经营净收入、财产性收入、转移性收入四部分组成。请根据图中提供的信息回答下列问题:
  (1)2005年义乌市城镇居民人均工薪收入为________元,2006年义乌市城镇居民人均可支配收入为_______元;
  (2)在上图2的扇形统计图中,扇形区域A表示2006年的哪一部分收入:__________.
  (3)求义乌市2005年到2006年城镇居民人远亲中支配收入的增长率(精确到0.1℅)
  19.解:(1) (x为正整数)
  (2)2006年全市人均生产产值= (元)(2分)
  我市2006年人均生产产值已成功跨越6000美元大关(1分)
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
说课包括哪些方面 说课内容包括()。 如何在手机百度上删除对话记录? 结核病是什么样的疾病? 曹丕17岁得了肺痨,明知自己命不长久,还要强争王位,是不是很自私呢?_百... 古代小说常出现的病名 急求一篇"生活小窍门"(500字)的作文 至今最有什么小妙招 健康的戒烟方法 笔记本电池锁死是什么原因引起的? 二次函数的知识点 二次函数知识点有哪些? 初三了,我需要数学二次函数的笔记 爱奇艺手机app人同时用多了会有封停提示,这个封停会永久吗?有些怕怕啊 周公解梦将要走进牢房 梦见侄子判了死刑? 梦见坐牢的侄子浑身是血? 梦到要及时理顺侄子坐牢的关系? 梦见侄子要去坐牢他杀人了要去坐牢 梦见侄子坐牢7年在姑姑面前伤心痛哭 404 Not Found 微信二维码申请、制作、生成、开通方法与流程是怎样? 大蒜生吃好还是熟吃好? 大蒜是生吃好还是熟吃好? 大蒜头生吃和煮熟了吃营养成分一样吗? 大蒜炒熟吃的功能主治 大蒜煮熟了吃营养会流失吗 大蒜煮熟后大蒜素还有吗?还有杀菌功效吗? 大蒜煮熟吃多有害处么?一餐一堆 中秋节的来源是从哪个国家 初中所有函数知识点总结都有什么? 初二一次函数的所有知识点 大运河的历史起源? 扬州古运河的古今历史 关于大运河的来历及故事 详细 大运河的历史起源 扬州大运河的历史上经历了那几个朝代的整修 大运河的历史详述 扬州大运河的历史可以上溯到哪个朝代 怎么领电子驾照 简要叙述扬州大运河胜迹 隋朝的大运河大概修建的过程是怎样的? 南北大运河有哪些历史? 扬州古运河和京杭大运河的区别 扬州古运河的故事 中国大运河由哪三部分组成 隋朝大运河被分为哪几段 大运河修了多少年? 大运河在多少年开凿 你好我的微信被封了让我邀请好友辅助可是为什么显示好友不符合辅助要