发布网友 发布时间:2022-04-22 06:46
共5个回答
热心网友 时间:2022-06-16 19:20
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
(如下图所示,即a² + b² = c²)
例子:
以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。
由勾股定理得,a + b = c → 3 +4 = c
即,9 + 16 = 25 = c²
c = √25 = 5
所以我们可以利用勾股定理计算出c的边长为5。
勾股定理的逆定理:
勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:
如果a² + b² = c² ,则△ABC是直角三角形。
如果a² + b² > c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
如果a² + b² < c² ,则△ABC是钝角三角形。
热心网友 时间:2022-06-16 19:21
勾股定理:
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
(如下图所示,即a² + b² = c²)
例子:
以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。
由勾股定理得,a² + b² = c² → 3² +4² = c²
即,9 + 16 = 25 = c²
c = √25 = 5
所以我们可以利用勾股定理计算出c的边长为5。
扩展内容:
勾股定理:
勾股定理(Pythagorean theorem)又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。
勾股定理的逆定理:
勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:
如果a² + b² = c² ,则△ABC是直角三角形。
如果a² + b² > c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
如果a² + b² < c² ,则△ABC是钝角三角形。
参考资料:勾股定理 - wiki
热心网友 时间:2022-06-16 19:21
勾股定理:指直角三角形的两条直角边的平方和等于斜边的平方。
拓展资料
勾股定理的定义:
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²。
在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
参考资料:百度百科 勾股定理
热心网友 时间:2022-06-16 19:22
直角三角形两直角边上正方形面积的和等于斜边上正方形的面积,即如果直角三角形两直角边长度为a和b,斜边长度为c,那么a²+b²=c²。中国古代称直角三角形的直角边为勾和股,斜边为弦,故此定理称为勾股定理。热心网友 时间:2022-06-16 19:23
付费内容限时免费查看回答勾股定律(Pythagorean Theorem,别称:勾股弦定理、勾股定理)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一
直角三角形,一条直角边3,一条直角边4.那么它的斜边是5
老铁看到没有回个话