发布网友 发布时间:2022-04-23 05:42
共3个回答
热心网友 时间:2023-08-17 08:55
如果数据没有注水的话,这个绝对是突破性的成果。lfw上超过人脸意味着在人脸识别80%的应用环境下机器的性能可以超过人脸。而06年的结果只意味着在身份证比对、小型办公场所签到等极少应用下机器的性能超过人脸。
1.2006年全面超过人脸时的条件是实验室内部拍摄条件、正面姿态、正面光照。这种条件下的人脸识别错误率的进展大约是每3年下降10倍。FRVT2012中期结果中最好的单位(不出意外应该是日本的NEC公司)的错误率已经达到了我们06年系统的1%左右。而我手上的系统相比06年大约提升了十几倍,目前在中期结果中排名6-7名。
2.lfw数据库直接是从雅虎网上抓的照片。难度在业界属于顶尖。该库09年公布后至今没有难度更大的静态照片库出现。难度相当但数据量更大的库倒是有两三个。我们06年的系统跑lfw也就70+的水平。而我们实验室的最高水平(也是国内除face++外的最高水平)大约是92左右。大概相当于2012年底的state-of-the-art。
3.2014年的三个逆天结果,deepface的97.25%、face++的97.27%、gaussianface的98.52%,前两者都用了deep learning。第一个训练数据400万。第二个算法细节不明,但deeplearning向来吃样本,想来训练库也是百万量级。唯有gaussianface的训练库仅2万余。
4.arxiv和CVPR等顶会完全不矛盾。先发上来只是为了不让别人抢先。估计未来的顶刊顶会上很快会出现这个结果。
5.算法细节太过技术,难以在这里深入浅出,就不多介绍了。只提一篇paper。Blei的latent dirichlet allocation,2003年的jmlr,引用量近万。本文对人脸的贡献方式大概相当于lda对文档分类的贡献方式,懂行的人自然知道这句话的分量。
热心网友 时间:2023-08-17 08:55
LFW(Labeled faces in the wild[1])是人脸识别研究领域比较有名的人脸图像集合,其图像采集自Yahoo! News,共13233幅图像,其中5749个人,其中1680人有两幅及以上的图像,4069人只有一幅图像;大多数图像都是由Viola-Jones人脸检测器得到之后,被裁剪为固定大小,有少量的人为地从false positive中得到[2]。所有图像均产生于现实场景(有别于实验室场景),具备自然的光线,表情,姿势和遮挡,且涉及人物多为公物人物,这将带来化妆,聚光灯等更加复杂的干扰因素。因此,在该数据集上验证的人脸识别算法,理论上更贴近现实应用,这也给研究人员带来巨大的挑战。
热心网友 时间:2023-08-17 08:56
最让人类纠结的事情莫过于明知自身有着高度的智慧,却不知这种智慧的运作机理,难道这种智慧里面就不包含了解这种智慧运作机理的智慧吗?人类想创造出拥有同等智慧的物体却始终不能得偿所愿。对人脸的识别能力是人类智慧中的一种,确切地说是人类视觉认知能力之一。如果说不能了解这种能力的运作机理,那是否可以对这种能力进行度量呢?比如说,人类在体育竞技上取得的成绩即可以认为是人类所具备的那些能力的度量,同理,也可以设计类似的分值以粗略量化人类对人脸的识别能力。