发布网友 发布时间:2022-10-24 00:06
共1个回答
热心网友 时间:2024-11-12 05:26
透视投影属于中心投影。透视投影图简称为透视图或透视,它是从某个投射中心将物体投射到单一投影面上所得到的图形。透视图与人们观看物体时所产生的视觉效果非常接近,所以它能更加生动形象地表现建筑外貌及内部装饰。在已有实景实物的情况下,通过拍照或摄像即能得到透视图;对于尚在设计、规划中的建筑物则作图(手工或计算机)的方法才能画出透视图。透视图以渲染、配景,使之成为形象*真的效果图。由于是中心投影,因此平行投影中的一些重要性质(如平行性、定比性等)和作图规律,在这里已不适用。
透视投影是用中心投影法将形体投射到投影面上,从而获得的一种较为接近视觉效果的单面投影图。它具有消失感、距离感、相同大小的形体呈现出有规律的变化等一系列的透视特性,能*真地反映形体的空间形象。
透视投影符合人们心理习惯,即离视点近的物体大,离视点远的物体小,远到极点即为消失,成为灭点。它的视景体类似于一个顶部和底部都被切除掉的棱椎,也就是棱台。这个投影通常用于动画、视觉仿真以及其它许多具有真实性反映的方面。
投影线垂直于投影面的投影属于正交投影 ,也称为平行投影。
我们将一个3维坐标表示为列向量,那么一个 3*3 的矩阵乘以这个列向量就可以得到一个新的列向量。如下,三维笛卡尔坐标与矩阵的乘法只能实现三维坐标的缩放和旋转,而无法实现坐标平移。
也称为相机反切(camera resectioning),主要用于估计图像或者视频摄像机的透镜和图像传感器的相关参数。使用这些参数可以纠正透镜畸变,度量真实世界中物体的大小,或者相机在一个场景中的定位。因而可以被用于机器视觉,去检测或者度量事物,也可用于机器人中,帮助导航系统和3D重建。
相机矩阵分解为两个矩阵的乘积:内参矩阵 K 和外参矩阵 [R|−RC]
内参矩阵是将3D相机坐标变换到2D齐次图像坐标。透视投影的一个理想模型就是针孔相机,有缩放的效果成像为倒影。市面上的相机都是透视投影。如下:
内参矩阵如下:
内参矩阵的每一个参数都有意义:
其它的参数 fy,x0,y0 也可以被转换为对应的世界单元 Fx,X0,Y0 :
第二个等式右边三个矩阵依次是:2D平移、2D缩放、2D切变
另一种等价的分解是将切变放在缩放前面 :
有一点需要注意:内参不影响可见性—— 阻隔对象(occluded objects)在图像空间中无法通过简单的2D变换显示出来。这里的 occluded objects 就是那些你希望看到,但是由于某些原因看不到的对象,比如目标跟踪的时候,一个目标被另一个目标遮挡了。
相机的外参矩阵描述的是世界坐标中相机的位置,及其指向方向。有两个成分:旋转矩阵 R 和平移向量 t 。它们并非恰好对应相机的旋转和平移。
外参矩阵以刚体变换矩阵的形式可以记为:左边一个 3∗3 旋转矩阵,右边一个 3∗1 的平移列向量 :
常见的做法是在底部增加一行 (0,0,0,1) ,这使得矩阵为方形的,允许我们进一步将矩阵分解为旋转和平移矩阵:
这个矩阵描述的就是如何将世界坐标系中的点变换到相机坐标系中,向量 t 描述的是世界坐标系原点在相机坐标系中的位置, R 的列代表的是相机坐标系中世界坐标系轴的方向。
从上可以发现,外参主要作用就是描述世界坐标系到相机坐标系的转换。与我们经常想的相机坐标系到世界坐标系的转换刚好相反。
实际中,直接指定相机的姿态比指定世界坐标系中的点如何转换到相机坐标系中更加自然,通过建立一个刚体变换矩阵描述相机姿态,然后对其取逆即可建立相机的外参矩阵。
因而可以这样做:定义一个描述相机中心在世界坐标系中的位置的向量 C ,然后让 Rc 代表相机在世界坐标系旋转到当前姿态需要的旋转矩阵。那么描述相机姿态的变换矩阵就是 (Rc|C) 。同样在底部添加一个行向量 (0,0,0,1) ,那么外参矩阵就是相机姿态矩阵的逆。
倒数第三个等式变换到倒数第二个等式,使用的转置是因为 Rc 是正交阵,此外,平移矩阵的逆就是他的负数平移向量,进而可以得到外参矩阵参数和相机姿态是直接相关: