复数在实际生活中有什么作用?
发布网友
发布时间:2022-04-23 01:54
我来回答
共5个回答
热心网友
时间:2023-09-30 02:08
复数是生活中的另一种惊喜,它是我们用日常观念无法预料却又冥冥一中存在的事一样。
从数学的角度来看,你若没有发现x平方加1等于零在已经认知的实数范围没有实数根,又怎么会转换角度让x的平方等于-1呢。再试着看,数轴上我圈一个点让它看起来不满足实际条件。但是那个圈不在数上吗?
所以,数学是来源于生活,来源于观察的。留给有心人的!实在不敢说自己懂数学,只是用心。那些大神说的比较难懂的理论我作为一个高三学生无法明白。以后一定会去好好感悟
热心网友
时间:2023-09-30 02:09
计算图形的旋转变化可以用到。平面的图形上每一点可设为(x,yi),作旋转变化时只要乘以与(1,0i)成某一角度的“单位复数”就可以了。比如说逆时针旋转90度就乘以(0,i)。
热心网友
时间:2023-09-30 02:09
要说你本人会不会直接面对复数的问题,这可不一定
但是你使用的很多东西无不和复数的计算有关,比如一个小小的收音机,其中的电路设计,计算电容电感等在电路中的效力,不使用复数可以说甚至寸步难行——当然,这是设计师的烦恼了
热心网友
时间:2023-09-30 02:10
你儿子或女儿或弟弟妹妹上高中时,问你有关复数的题时,你可以回答,而不是尴尬;)
热心网友
时间:2023-09-30 02:10
在系统分析中:
系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。 无论系统极点和零点在左半平面还是右半平面,根轨迹法都很重要。如果系统极点 位于右半平面,则因果系统不稳定; 都位于左半平面,则因果系统稳定; 位於虚轴上,则系统为临界稳定的。如果系统的全部零点和极点都在左半平面,则这是个最小相位系统。如果系统的极点和零点关於虚轴对称,则这是全通系统。
信号分析:
信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。 利用傅立叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示: 其中ω对应角频率,复数z包含了幅度和相位的信息。 电路分析中,引入电容、电感与频率有关的虚部可以方便的将电压、电流的关系用简单的线性方程表示并求解。(有时用字母j作为虚数单位,以免与电流符号i混淆。) 反常积分 在应用层面,复分析常用以计算某些实值的反常函数,藉由复值函数得出。方法有多种,见围道积分方法。
量子力学:
量子力学中复数是十分重要的,因其理论是建基於复数域上无限维的希尔伯特空间。 相对论 如将时间变数视为虚数的话便可简化一些狭义和广义相对论中的时空度量 (Metric) 方程。 应用数学 实际应用中,求解给定差分方程模型的系统,通常首先找出线性差分方程对应的特征方程的所有复特征根r,再将系统以形为f(t) =e的基函数的线性组合表示。