大学微积分
发布网友
发布时间:2022-09-24 01:17
我来回答
共1个回答
热心网友
时间:2023-09-10 22:17
1、无穷小的概念:
无穷小不是一个很小的数的概念,而是一个过程的概念;
是指一个变量越来越小,无止境地、无限地、无穷地、没完没了地小下去的过程;
趋向于0的过程是不可以中止的,小下去的过程中,要多小有多小,永远没有最小;
它是趋向于0,不是等于0;如果是等于0,就没有必要计算,直接代入计算就行了;
出现无穷小的情况,通常发生在比值计算上,也就是分母可能为,但是比值不为0;
无穷小可以是从负的方向趋向于0,也可以从正的方向趋向于0;
也可以一会儿正,一会儿负,但是绝对值却是一直小下去,越来越趋近于0。
2、有界的概念:
有界是指,有一个限度,或是一个幅度,或是一范围,函数值超不出这个范围;
例如正弦函数、余弦函数,超不出正负1的范围,它们就是有界函数;
譬如任何椭圆、圆、众多的轨迹方程,它们都有界,函数的范围都有一个*;
自变量的范围是定义域,是domain,函数的范围是值域,是range。
3、有界函数乘以无穷小的情况:
因为是两个函数的乘积,譬如AB,A有*,不得大于多少,也不得小于多少,
而B却可以越来越小,越来越趋向于0,因为A的值是有限的大,而B却可以无限
地小下去,乘积的结果也就不可避免地无止境地小下去;
这个小下去的过程中,可能会有起伏,但是整体趋势是无止境地小下去,趋于0;
在一个个小区间内,会有上升的情况,若楼主动阻尼运动,就是一个最好的例子;
所以,我们说,有界函数乘以无穷小,结果仍为无穷小。
欢迎追问。
热心网友
时间:2023-09-10 22:17
1、无穷小的概念:
无穷小不是一个很小的数的概念,而是一个过程的概念;
是指一个变量越来越小,无止境地、无限地、无穷地、没完没了地小下去的过程;
趋向于0的过程是不可以中止的,小下去的过程中,要多小有多小,永远没有最小;
它是趋向于0,不是等于0;如果是等于0,就没有必要计算,直接代入计算就行了;
出现无穷小的情况,通常发生在比值计算上,也就是分母可能为,但是比值不为0;
无穷小可以是从负的方向趋向于0,也可以从正的方向趋向于0;
也可以一会儿正,一会儿负,但是绝对值却是一直小下去,越来越趋近于0。
2、有界的概念:
有界是指,有一个限度,或是一个幅度,或是一范围,函数值超不出这个范围;
例如正弦函数、余弦函数,超不出正负1的范围,它们就是有界函数;
譬如任何椭圆、圆、众多的轨迹方程,它们都有界,函数的范围都有一个*;
自变量的范围是定义域,是domain,函数的范围是值域,是range。
3、有界函数乘以无穷小的情况:
因为是两个函数的乘积,譬如AB,A有*,不得大于多少,也不得小于多少,
而B却可以越来越小,越来越趋向于0,因为A的值是有限的大,而B却可以无限
地小下去,乘积的结果也就不可避免地无止境地小下去;
这个小下去的过程中,可能会有起伏,但是整体趋势是无止境地小下去,趋于0;
在一个个小区间内,会有上升的情况,若楼主动阻尼运动,就是一个最好的例子;
所以,我们说,有界函数乘以无穷小,结果仍为无穷小。
欢迎追问。