发布网友 发布时间:2022-04-23 03:34
共5个回答
热心网友 时间:2022-04-15 12:02
在计算机中并没有一个真正的随机数发生器,但是可以做到使产生的数字重复率很低,这样看起来好象是真正的随机数,实现这一功能的程序叫伪随机数发生器。 有关如何产生随机数的理论有许多如果要详细地讨论,需要厚厚的一本书的篇幅。不管用什么方法实现随机数发生器,都必须给它提供一个名为“种子”的初始值。而且这个值最好是随机的,或者至少这个值是伪随机的。“种子”的值通常是用快速计数寄存器或移位寄存器来生成的。 下面讲一讲在C语言里所提供的随机数发生器的用法。现在的C编译器都提供了一个基于ANSI标准的伪随机数发生器函数,用来生成随机数。它们就是rand()和srand()函数。这二个函数的工作过程如下:”) 首先给srand()提供一个种子,它是一个unsigned int类型,其取值范围从0~65535; 2) 然后调用rand(),它会根据提供给srand()的种子值返回一个随机数(在0到32767之间) 3) 根据需要多次调用rand(),从而不间断地得到新的随机数; 4) 无论什么时候,都可以给srand()提供一个新的种子,从而进一步“随机化”rand()的输出结果。 这个过程看起来很简单,问题是如果你每次调用srand()时都提供相同的种子值,那么,你将会得到相同的随机数序列,这时看到的现象是没有随机数,而每一次的数都是一样的了。例如,在以17为种子值调用srand()之后,在首次调用rand()时,得到随机数94。在第二次和第三次调用rand()时将分别得到26602和30017,这些数看上去是很随机的(尽管这只是一个很小的数据点集合),但是,在你再次以17为种子值调用srand()后,在对于rand()的前三次调用中,所得的返回值仍然是在对94,26602,30017,并且此后得到的返回值仍然是在对rand()的第一批调用中所得到的其余的返回值。因此只有再次给srand()提供一个随机的种子值,才能再次得到一个随机数。 下面的例子用一种简单而有效的方法来产生一个相当随机的“种子”值----当天的时间值:g#椋睿悖欤酰洌澹Γ欤簦唬螅簦洌椋铮瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅簦洌欤椋猓瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅螅Γ#矗罚唬簦穑澹螅瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅螅Γ#矗罚唬簦椋恚澹猓瑁Γ纾簦弧。觯铮椋洹。恚幔椋睿ǎ觯铮椋洌。。椋睿簟。椋弧。酰睿螅椋纾睿澹洹。椋睿簟。螅澹澹洌郑幔欤弧。螅簦颍酰悖簟。簦椋恚澹狻。簦椋恚澹拢酰妫弧。妫簦椋恚澹ǎΓ幔恚穑唬簦椋恚澹拢酰妫弧。螅澹澹洌郑幔欤剑ǎǎǎǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫簦椋恚澹Γ幔恚穑唬埃疲疲疲疲。ǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫恚椋欤欤椋簦恚蕖。ǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫恚椋欤欤椋簦恚弧。螅颍幔睿洌ǎǎ酰睿螅椋纾睿澹洹。椋睿簦螅澹澹洌郑幔欤弧。妫铮颍ǎ椋剑埃唬椋Γ欤簦唬保埃唬椋。穑颍椋睿簦妫ǎΓ瘢酰铮簦唬ィ叮洌Γ#梗玻唬睿Γ瘢酰铮簦籦egjrand()); } 上面的程序先是调用_ftime()来检查当前时间yc并把它的值存入结构成员timeBuf.time中wae当前时间的值从1970年1月1日开始以秒计算aeh在调用了_ftime()之后在结构timeBuf的成员millitm中还存入了当前那一秒已经度过的毫秒数,但在DOS中这个数字实际上是以百分之一秒来计算的。然后,把毫秒数和秒数相加,再和毫秒数进行异或运算。当然也可以对这两个结构成员进行更多的计算,以控制se......余下全文>>热心网友 时间:2022-04-15 13:20
随机数算法是指如何产生符合各种统计分布的随机数的算法,计算机提供的算法如random等产生的都是均匀分布的数,要以这个分布为基础,产生各种其他分布的算法,如高斯分布等热心网友 时间:2022-04-15 14:55
在密码技术中,随机序列是非常重要的,比如密钥产生、数字签名、身份认证和众多的密码学协议等都要用到随机序列。所以产生高质量的随机数序列对信息的安全性具有十分重要的作用。随机数分为真随机数和伪随机数,计算机通过算法产生的随机数并不上真正意义上的随机数,很容易被破解,只能称为伪随机数。若要产生真正的随机数,必须通过硬件来实现,比如使用离子辐射事件的脉冲检测器、气体放电管和带泄露的电容等,但是为每台计算机配备这样的装置上不可能。所以在此我们通过改进我们的算法,使生成的伪随机数达到真随机数的标准。热心网友 时间:2022-04-15 16:46
一般是线性同余法热心网友 时间:2022-04-15 18:54
SHA256应该可以吧