发布网友 发布时间:2022-09-28 11:22
共1个回答
热心网友 时间:2024-12-03 01:43
0.999…是书写于小数记数系统中的一个数,一些最简单的0.999… = 1的证明都依赖于这个系统方便的算术性质。大多数的小数算术──加法、减法、乘法、除法,以及大小的比较,使用与整数差不多的数位层次的操作。与整数一样,任何两个有限小数只要数位不同,那么数值也一定不同。特别地,任何一个形如0.99…9的数,只要只得有限个 9 ,这些 9 最终会停止,则该数都是严格小于1的。
误解0.999…中的“…”(省略号)的意义,是误解0.999… = 1的其中一个原因。这里省略号的用法与日常语言和0.99…9中的用法是不同的,0.99…9中的省略号意味着有限的部分被省略掉了。但是,当用来表示一个循环小数的时候,“…”则意味着无限的部分被省略掉了,这只能用极限的数学概念来阐释。作为使用传统数学的结果,指派给记数表示式“0.999…”的值定义为一个实数,该实数为收敛数列(0.9,0.99,0.999,0.9999,…)的极限。“0.999…”是一个数列的极限,从这方面讲,对于0.999…=1这个等式就很直观了。
与整数和有限小数的情况不一样,其实记数法也可以多种方式表示单一个数值。例如,如果使用分数, 。但是,一个数最多只能用两种无限小数的方法来表示。如果有两种方法,那么一种一定从某一位开始全是循环重复的9,而另外一种则一定从某一位开始就全是循环重复的零。
0.999… = 1有许多证明,它们各有不同的严谨性。一个严谨的证明可以简单地说明如下。考虑到两个实数其实是同一个的,当且仅当它们的差等于零。大部分人都同意,0.999…与1的差,就算存在也是非常的小。考虑到以上的收敛数列,我们可以证明这个差的大小一定是小于任何一个正数的,也可以证明(详细内容参见阿基米德性质),唯一具有这个性质的实数是零。由于差是零,可知 1 和 0.999… 是同一数。用相同的理由,也可以解释为什么 ;而该等式乘上3倍后成为“0.999… = 1”。