《正比例函数的性质》教学设计
发布网友
发布时间:2022-09-29 15:28
我来回答
共1个回答
热心网友
时间:2024-12-02 19:12
《正比例函数的性质》教学设计
一、教学目标
(1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。
(2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;
(3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、教学的重点和难点
教学重点:正比例函数的性质及其应用。
教学难点:发现正比例函数的性质
三、教学方法与学法指导教学方法:引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:引导学生学会观察、归纳的学习方法。
四、教具准备电脑PPT,洋葱学院电脑版 五、教学过程:
(一)温故知新,引入课题
温故:正比例函数的图像是什么?
答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线
(二): 知新:
在两个直角坐标系内,分别画出下列每组函数的图象像: y=x y=3x y=4x y= y=x ② y=-x y=-3x y=-4x y=- y=-x
引导学生观察图像,看看每组直线分布的特征先让学生在坐标纸上画出上述函数的图象,之后利用洋葱学院播放《正比例函数的性质》,以动态的演示画出函数图象,吸引学生的学习兴趣,让他们能查漏补缺,找出自己所画的图象与视频中的图象有什么不同?
观察图像,思考问题:
1.图像经过的象限与k的取值有何联系?不够明确。图像经过的象限与k的取值(特别是符号)有何联系?
2.对其中的某一个正比例函数图像(例如y=3x),当x增大时,函数值y怎样变化?x减小呢?是不是要提出减小?请斟酌。
3.你从中得出什么规律?
第一个问题:图像经过的象限与k的取值有何联系?
估计生:发现第一组的五条直线都经过第一象限和第三象限;而第二组的五条直线都经过第二和第四象限。
师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致
估计生:第一组k>0,而第二组k<0。
师:很好,谁能把他们联系一下?
估计生:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
师:那么是不是对于所有的正比例函数的图像都有:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k的值都小于零的。】(这个演示过程可以登录www.desmos.com/calculator 这个网址,进行演示,让学生更加直观的观察到k的正负对函数图象的影响)
下面由老师来证明这个性质:(由观察猜想到逻辑证明)
板书:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
证明:当k>0时,若x>0,则kx>0,即y>0 ∴点(x,y)在第一象限
若x<0,则kx<0,即y<0 ∴点(x,y)在第三象限
当x=0时,则kx=0,即y=0 ∴点(x,y)即原点。
即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。同理,当k<0时,亦可证明函数图像经过二、四象限。
我们看到:当k>0时,函数图像的走向很像汉字笔画里的“提”,当k<0时,走向是“捺”。这样更形象,容易记忆。
PPT展示正比例函数的性质:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
师:现在我们做个小练习,由正比例函数解析式(根据k的正负),来判断其函数图像的走向。
y=-x y=x y= x y=-x y=(a2+1)x (其中a是常数) y=(-a2-1)x (其中a是常数)
鼓励学生踊跃抢答。
反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x增大时,函数值y怎样变化?x减小呢?)播放洋葱视频。
板书:当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;(即“提”的走向)当k<0时,自变量x逐渐增大时,函数值y反而减小。(即“捺”的走向)
师:小练习:由函数解析式,请你说出它的变化情况:y=3x y=-x y=x y=- y=(a2+1)x (其中a是常数)y=(-a2-1)x (其中a是常数)
鼓励学生踊跃抢答。
第三个问题:你从中得出什么规律?
归纳总结(由学生回答)正比例函数y=kx(k≠0)的性质:
当k>0时,函数图像经过第一、三象限;自变量x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)
当k<0时,函数图像经过第二、四象限;自变量x逐渐增大时,函数值y反而减小。(也就是“捺”的走向)
归纳为一句话,正比例函数图象的性质归根结底看k的符号。
即: k>0 提 (一、三,增大) ;
k<0 捺 (二、四,减小)
(三)应用
1、、正比例函数的解析式是___________ ,它的图像一定经过 ___________ 。
2、y=-的图像经过第 ___________ 象限。
3、已知ab <0,则函数y= x的图象经过 ___________ 象限。
4、已知正比例函数y=(2a+1)x,若y的值随x的增大而减小,求a的取值范围。
5、当m为何值时,y=mxm2-3是正比例函数,且y随x的增大而增大。
思考题:
① 已知正比例函数y=(m+1)xm2+1,那么它的图象经过哪些象限。
② 分别说明下列各正比例函数,当m为何值时,y随x的增大而增大,或y随x的增大而减小?
a、y=(m2+1)x
b、y=m2x
c、y=(m+1)x
(四)小结这节课让我们知道了……
以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络(先播放视频,之后PPT总结本节课的重点)。
(五)作业89页 练习题
(六)课后反思
1.成功之处:本节课的重点是正比例函数的性质及其应用。难点是发现正比例函数的性质,通过教师的引导,洋葱视频的引导,启发调动学生的积极性,让学生自主的去分析发现函数的性质。教师的主导作用与学生主体地位达到了统一。使本节课的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生利用数形结合的思想方法解决问题的能力;本节课的教学注重由传授单一的知识技能,转向为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握。
2.不足之处:
(1)在探索正比例函数性质时,没有预估到学生画函数图象费时太长,导致后面的教学过程比较紧张。
(2)在应用新知这一环节中对学生习题的反馈情况了解的不够全面。
(3)为激发学生自主学习的兴趣,教师的课堂语言应精炼。
3、改进措施:
(1)要充分的相信学生总结规律的能力。在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题。
(2)在学生明确正比例函数的性质后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确的掌握学生对新知识的掌握情况。
(3)在性质的发现总结过程中,应让学生自己独立完成,教师不必着急帮助总结,这样可以更加集中学生的注意力,激发学习兴趣。
在实际教学中为了体现学生学习的主体性,和教师教学的主导性,我花费了很多时间在学生的动手操作、小组讨论上,但如何能更好的处理好学生探索过程中的引导和讲解,还需要在实际教学中不断地反思才能不断地进步。