发布网友 发布时间:2022-04-23 09:27
共3个回答
热心网友 时间:2023-10-09 12:46
如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji),(i,j为元素的脚标),则称A为实对称矩阵。
对称矩阵(Symmetric Matrices)是指以主对角线为对称轴,各元素对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。
扩展资料:
实对称矩阵主要性质:
1、实对称矩阵A的不同特征值对应的特征向量是正交的。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。
5、实对称矩阵A一定可正交相似对角化。
参考资料来源:百度百科-实对称矩阵
参考资料来源:百度百科-对称矩阵
热心网友 时间:2023-10-09 12:46
具体如下:
对称矩阵(Symmetric Matrices)是指以主对角线为对称轴,各元素对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如称为埃米特矩阵的特征根性质等。
如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji),(i,j为元素的脚标),则称A为实对称矩阵。
主要性质:
1、实对称矩阵A的不同特征值对应的特征向量是正交的。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。
5、实对称矩阵A一定可正交相似对角化。
热心网友 时间:2023-10-09 12:47
对称矩阵首先是一个方阵,然后它一主对角线做对称轴做对称,元素相同。可以理解为把一个正方形沿对角线折叠的样子。