发布网友 发布时间:2022-04-23 08:11
共1个回答
热心网友 时间:2022-06-18 04:48
(一)地震
地震是地壳岩层受力后快速破裂错动引起地表振动或破坏。它带来房倒屋塌、山崩地裂,乃至引发海啸。它是最剧烈的地质灾害之一。
我国是最早记录地震的国家,上古神话“头触不周山,使天柱折,天西倾,水东流”就是上古对地震的记述。中国历史上则早在商周时期就有史官记录地震。
地球上板块与板块之间相互挤压碰撞,造成板块边沿及板块内部产生错动和破裂,是引起地面震动(即地震)的主要原因,其他原因还有火山爆发、陨石撞击地球,三者都可造成不同程度的地震。
测量地震强度有两种系列,常用的为里氏地震震级分级,可划分为九级。它按一次地震震动所释放出来的能量数值来划分震动的级别。标准的统计方法是以距震中100千米处所测量到的最大震动幅度(以微米计,毫米的千分之一)为单位的对数值。如该点测量到的水平方向的震幅为10毫米,即104微米,它的对数值为4,即等于四级地震。目前已知最大的地震震级为9.5级,是1960年5月22日的智利大地震。经过测算,这次地震释放的能量相当于2.7万颗广岛原子弹爆炸所产生的能量(广岛原子弹为2万吨TNT爆炸的能量)。依据这一划分标准,3级地震为室内静坐人员能感觉到的地震,4级地震能使室外人员感觉到地壳在震动,我们称之为有感地震。如果达到了6级以上的地震,就属于有墙倒瓦飞的破坏性地震,常伴随有人员伤亡。
地震的另一种统计划分标准,是按强烈程度来划分的,共分为十二级。上述4级有感地震的烈度相当于五级烈度的地震,墙倒瓦飞相当于8级烈度的地震,唐山地震的烈度应相当于十一级烈度。地震烈度,是以地面人能感觉到、城市建筑破坏强度来划分的。它与里氏强度一般成正相关关系。里氏地震级别高,地震烈度级别划分也高。实质上,它还与震动中心在地壳中的深度相关,震中愈深,烈度愈低。一般震动中心距地表十千米以内称浅源地震,其危害程度大于深源地震。
地震构造示意图
地震烈度还与地壳表层的地质结构有关。平原地区,地壳岩石圈之上有较厚松散的泥沙堆积物,它常处在地下水浸泡之中,当地下岩石发生震动时,震动时间稍长,就会造成本来呈固态的泥沙水三者混合体发生液化,变成可流淌的液态。我们在房屋建筑工地时常可见到水泥浇注好后,工人拿起棒棍状震动器,将棒插入半固态的水泥层中,在强烈震动下,水泥呈液态流动,它会驱除水泥层中大大小小的气泡,震平原来手工浇注后呈起伏不平的水泥表面,从而使水泥形成致密状的无气孔的统一整体。
据史料记载:唐山大地震的地震烈度为里氏7.8级,由于引发城市区地基中的沙泥层整体液化,从而使地基失衡,发生波浪状晃动,就像城市建在浪花上一样。平整的地基下面发生七高八低的变形,当然地基就变成七零八落的不稳定体,其上墙柱理所当然在顷刻间轰然倒塌,所以地震夷平了整个唐山市的地面建筑。2008年5月12日的汶川地震,地震强度为里氏8级,由于发生在川西山区,震后不少房屋虽破损严重乃至倾斜,但还竖立在地面而未被抹平,其原因就是它们的地基为基岩山区稳固的岩石,在发生震动过程中无液化,因此毁坏程度低。
地震毁坏程度还与地壳断裂性质有关,如果此断裂为一逆断层,它的下盘地层被上盘地层所挤压。地震时震中位于断层缝中,则上盘的震动烈度要大于下盘,因为下盘地层被上盘压住,震幅当然受抑制。而上盘是个自由面,震动的发挥就比较充分,所以造成毁坏程度就高。在汶川地震中,成都平原是川西龙门大断裂的下盘,所以成都市震动烈度就远远小于上盘的汶川县。
地震造成砂体液化,在地质上也有记录,那就是砂岩中的包卷层。地震造成沙层液化,由于震动使原来岩层间分布均匀的重力负荷发生改变,半固结状态的泥沙层向低洼处流动,像软泥一样陷落到陷落层中,形成了包卷构造。五台山区的滹沱系青石村组火山岩上下石英岩、板岩层中大大小小的包卷层处处可见,显然是地质历史时期火山地震的震动记录。
为了减少地震的破坏,国家对城市的建筑作出规定,如房屋的基础结构、钢筋水泥的强度、圈梁的宽厚都有明确的规定和严格的数据。因为房屋钢筋越多越粗,混凝土中水泥标号越高,房屋必然越牢固,人员的伤亡必然减少,但这必将大幅度地增加建筑成本。本着既保障安全,又能节约成本的原则,根据建筑地区的地震设防烈度,工程师经过地基勘察、岩土测试、准确计算、合理设计等程序,设计出满足要求的施工设计方案。
生活与地质
从地质构造上分析,许多断层具有活动性,有的已被固结焊死。比如山西地区18亿年之前的断层,基本都不再活动,只有燕山期(1.8~1.3亿年间)发生的断层才可能“复活”,至于2500万年以来喜马拉雅运动形成的断层,其活动性更高,所以山西五大裂谷盆地,都属于防8级地震区。山西历史上曾有过8级地震的记载(洪洞8级地震),普遍发生过6级以上地震。
在修建高速公路、铁路时,遇上活动断层(1万年以来发生过断裂的断层),线路必须绕开断层。如果发现断层发生在黄土中,就可以判定它是活动断层。山西位于黄土高原的东部,而黄土高原形成于新生代,山西境内有不少此类断层。
地震发生在海洋中时,常会引发海啸。21世纪初,印度洋海啸形成的海浪浪高15米,涉及范围长上千千米,波及许多岛国边海地带。这次地震由印尼—新西兰之间的地壳大断层引发,该断层延长1500千米,断层两盘升降幅度10~15米。该海啸袭来之前,许多地方迅速发生大退潮,当人们纷纷下滩捡鱼虾之时,波涛立即扑面而来,速度超过了百米冲刺,除了岸上的游客被冲上二楼、三楼躲过一劫外,大部分海滨游客都在劫难逃,葬身*,甚至有不少人尸骨都未见(被埋海底)。
地震,这一危及人们生命的地质灾害至今尚无法准确预测,因为引起地震的因素太复杂,它涉及断层性质、断层两盘岩层的结构、地应力的强度、地应力的方向等一系列边界地质条件。除此,板块运动中地震区的位置、运动方式、方向、强度、互相牵制性以及地壳上部负荷的改变(例如兴建水库)等,均能引发地震的发生。如一座大型水库,蓄水后,由于水体增加,库区内的重量可猛增至几亿吨乃至几十亿吨,加上筑建大坝增加的重量也有几十万吨到几千万吨。这些在库区范围内新增的负荷,必然会使该地区应力状态改变和负荷重新调整,它的改变可能会直接影响到附近断层面的微小滑动。所以一座大型水库建成后,经常会触发四级以下地震,其频率可以多达数百到数千余次。
今天地震科学尚不成熟,仍处于探索阶段。加上自然界的“蝴蝶效应”——南美亚马孙河热带雨林中有一种蝴蝶,扇动一下翅膀,就有可能放大到北美刮起一场龙卷风。对地震来说,当应力达到极限状态时,也许一辆重载列车驶过,就会触发某一区域的一次地震。
地震来临之前,不少动物会有异常举动,如蛇出洞、鼠搬家、鸡不进笼、狗狂吠。日本学者常提出“地震云”,但这不是必然的规律。理论上讲,地应力的剧增,可能引发地壳的电磁场反应,它作用到这些地下蛰伏的蛇鼠,也会促使它们出洞、迁移。然而气候的波动、太阳黑子的活跃也可引发地壳电磁场的变化,甚至动物间种内斗争、外侵物种进入,也会造成原居地动物外迁。所以不能据此而发布地震预报。
科学发展到今天,我们只能指出哪些地方是地震高发区,哪些地方容易发生强震,但不能明确具体的时间,也难以指出地震的强度。
(二)山洪暴发
新中国建立后,我国根治了淮河、黄河的洪涝灾害,全国大江大河引发区域性水灾的机会大大降低了,但小流域的洪灾却增加了。
21世纪以来,甘肃舟曲山洪暴发,使整个县城几万人丧生。舟曲城北两条不足2千米长的小山沟,冲下几十万立方米的砂砾,沟口洪积扇上的房屋全部被冲毁,山洪从东西两侧倾注入城,加上南面白龙江的河曲外湾,洪水灌满2米高的防洪堤内侧,城区一片汪洋。
地质人员常年奔波于野外,也时常遇到山洪,平时涓涓细流水不及足踝,但暴雨过后,水深可达两米,洪水宽百余米甚至数百米,顷刻间浊浪滔天,冲毁了堤防,冲倒了房屋,冲走了大树。1956年的一场山洪,五台县石咀村(乡*所在地)靠河边的半个村庄被洪水冲走。21世纪初的一场山洪,使福州北山沟里一个军校宿舍全部被扫平。
通过卫星及航空影像对比,与20世纪60~70年代相比,几乎现在所有城市的占地面积与规模都扩大了许多倍,有的甚至达10倍以上。城镇要扩展,高速公路、高速铁路等城市基础与配套设施也要兴建,同时还要保证国家基本农田18亿亩这条红线不动摇。房子往哪里建?挤河道、挤湖泊,填海填湖,向水域扩展,向山上扩展,城建出路走上了“上山下水”的路子。
为了提高人民生活水平,改善人类居住的环境质量,城市里还要保障30%的绿地,这项要求已大大超过西欧各国。按照这种要求发展下去,我国城市在不久的将来会变成世界绿地占有率的“暴发户“。
再以五台县的石咀村为例,该村历史上曾遭洪水大灾。这一河段上百米宽的河道,如今只留下四分之一的宽度。如果再来一次像1956年那样的大洪水,四分之三石咀村的住房将被淹没。这种不科学无*的扩展,必然危及人民的生命财产安全,应当引起有关部门的高度重视。
随着快速化的城市发展和工业时代的到来,环境破坏和大气污染也越来越严重,如今大气层外臭氧层的空洞在不断扩大,二氧化碳排放量的不断攀升,温室效应的增加,已经造成了许多环境恶化的结果,如“厄尔尼诺现象”——局部海洋增温引发的气象异常,拉尼娜现象——局部降温引发的气象异常。本来春夏之交,江南黄梅雨——热气流北进与冷气流交锋而形成一个多月阴雨连绵的梅雨期如今缩短了,雨量减少;原来云贵高原初夏的雨季相反成了旱季,如此等等。这种大规模的空气流动减弱了,而局部强对流气旋增强了。总而言之,环境的急剧恶化,导致局部地区50年甚至百年一遇的暴雨增多了,再加上许多违背自然规律的建筑,洪水灾害的概率也大大地增加了。
(三)泥石流
当山坡上堆积的沙泥土层中的孔隙里充盈水并达到临界值时,连水带泥沙,在重力作用下就会向下游流动,此时山坡上的风化滚石也将随泥沙而被冲下。这种在水的参与下形成的高密度的泥沙流体就是泥石流。实验数值表明,当泥沙中水分含量达到30%时,水与泥沙就会变成固溶体,在重力的作用下向下游流动。当然山坡越陡,沙土层越厚,水分越多,运动的速度就越快;运动体的体积越大,它的危害性也就越强。
典型泥石流示意图
当山坡树木繁茂,植物根系发达,土层被植物交织成网时,泥石流不易发生。因为山坡越陡泥石流越容易发生,所以住房切莫建在陡坡上,也不能建于陡坡下。但到底多大坡度才能使泥石流不发生呢?一般来讲,可用沙锥体的稳定角作为判断的依据,坡角小于30°时是稳定的。但实际情况远比这要复杂得多,广东韶关曾发生坡角仅5°~8°的泥石流。在水的参与和重力的作用下,不稳定的流体必然要往下游流动,只要有坡度,必然受到重力的作用。当水含量超过50%时,即使只有3°~5°的坡角,也会发生流动。也正因为如此,泥石流的预防难度也相当大。
如果暴雨时间不长,雨水虽大,但来不及渗透就沿地表流走了,那么泥石流也不会发生。反之,雨量虽小,但连绵不绝,下到地面的雨水来不及形成地表的流水就渗入地下。它有足够的时间渗入泥沙空隙中,这样几乎所有的降雨都将储存到松散的泥沙中,当含水达到一定量时,泥石流就会发生。如果泥土层很瓷实,板结很紧密,它们的孔隙度很小,雨水即使渗满沙土中的孔隙,但它的孔隙度远远小于30%,那么雨再大,时间再长,也不会形成泥石流。
生活与地质
与泥石流相似的还有尾矿沉淀池,即尾矿库。大型矿山采出矿石,一般须经过粉碎、选矿工序,精矿选出后留下尾矿,一般都堆积到选矿场附近的山沟中。因为选矿常用水作为载体;尾矿的管道运送一般也不是干沙,而是水溶浆体,也需大量水。所以沉淀池必然是个水沙混合池。池前必有堤坝,挡水挡沙往高处堆,而今这些堤坝远远达不到水库那样的安全系数,因为这些坝体主要拦截的尾矿是固体,水已从事先铺设的管道流走了。
一些工厂为了节约成本,往往将坝体建得不十分牢固。正因为坝体的安全系数较低,若在长时间的水的参与下,坝基失去稳定,整座坝体在很短时间内会被冲垮,成百上千万立方米的尾矿砂就成为泥石流顺沟迅速冲下,席卷途中一切树木石块,位于坝体下游的村庄、房屋、桥梁等也将被洗劫一空,造成巨大灾难。2008年,临汾市襄汾塔儿山铁矿溃坝事故造成几百万立方米的尾矿形成泥石流,掩埋了整个村庄,连同村中恰逢赶集的附近村民也命丧黄泉,造成了特大泥石流灾害。该矿为磁铁矿床,年产精矿几十万吨,原矿经粉碎、选矿后留下的尾矿年产近百万吨。长200米,宽百余米的冲沟只有一道坝体,所以一旦溃坝,势如万马奔腾。赶集的人听到泥石流奔腾的声音,来不及分辨是什么声响,高达2~3米的黑色砂浆前锋已冲到跟前。只有集市两端的村民来得及向外逃命,位于流线*的村民发现砂浆汹涌扑来,来不及逃就已被卷入。这一尾矿坝溃坝事件的发生,再次引起*的高度重视。*下令检查全国尾矿坝,一律要求工厂加固防险,责任到人,杜绝类似事故再次发生。
(四)崩塌、滑坡、地裂、地陷
1.山体崩塌
当山体坡度陡峭时,山壁就容易因重力作用及冰冻裂解作用而发生崩塌。重力作用使岩壁向山体外侧的自由面发生倾斜,最终因与内壁失去联系而向外成片倒下。冰冻裂解作用是渗入岩石中的水因温度下降至结冰点以下而体积膨胀,使原来充填于岩片与山体之间的微小裂缝在热胀冷缩作用下不断被撑开,裂隙随之扩大;水不断渗进,裂缝不断扩大,如此反复,岩石自然会被肢解。事实上,水在结冰时,每平方米可产生900千克的推力,随着面积的增大,力量也随之增加,当然几吨、几百吨甚至上千吨重的石壁也终究会被裂解、推倒。
崩塌作用,一个重要的前提是岩石具有巨大、通透且平行于坡面的裂隙。无论原来的水平地层还是花岗岩体,它们都有很强的内部凝聚力,一般是不会倒塌的。只有后来地壳的构造运动,使岩层产生陡倾、破裂,也只有这一组裂隙面与外壁面走向平行时,石壁才会顺节理面裂开至倒下,形成崩塌。地层倾斜时,倾斜的层理与山坡自由面的坡面朝向一致时,岩层就会顺层理滑下,或斜切层面一片片剥落。这是构造运动导致岩石裂开,然后成片倒下的结果。更多的是岩石滚落,花岗岩、厚层石灰岩、石英岩等,因多组节理切割而风化成孤立的巨石状,花岗岩的外形更接近于球状,平时它们停留在山坡上,一旦风吹草动或轻微震动,巨石就会失去平衡而滚下。
当岩石受到两组近垂直、直立的节理面切割时,风化后的岩石呈石柱状独立于山坡外侧,也较容易使石柱倾倒、崩塌。所以重力作用的崩塌实际包含三种倒塌形式:滑塌、崩塌、滚落。它均对住房产生危害,并威胁到坡下车马行人、施工设备及人员。为了防止石壁滑塌及崩塌,通常需用水平横杆打进山体,再用螺帽铁板固定坡体。
2.滑坡
通常是巨厚松散堆积如黄土、红土最容易产生滑坡,而基岩山体只有宽大平整的地层层理、岩石节理其面理朝向与坡面倾向一致,即都朝向山体外面的自由面时,才可能发生顺面理的滑坡。
山西高原黄土覆盖面积达2万平方千米,厚几十米到二三百米的土层,冲沟深切,小型滑坡随处可见,它们一般宽几米到几十米,落差几米,构成小型黄土台阶,貌似梯田(一般田面很窄、田坎很高)。大型黄土滑坡的滑坡面长几百米甚至1~2千米,滑落高度可达50~60米,一般滑坡后缘断壁面平整而开阔,它们常常发生在黄土梁靠近分水岭区。
黄土区这两种类型的滑坡很少有屋倒人伤的记载,但在人类居住较为密集的村庄及公路、大型工程开挖地区,此类灾害时有发生。常见的有黄土滑坡、窑洞坍塌、人员被埋等,往往是由于人类的工程活动开挖,使原来处于稳定状态的黄土因地基被挖而失去稳定,后方大量土方在重力作用下垮塌。
黄土滑坡也易在雨后发生。黄土中地下水充盈,土壤内聚力变小,容易使壁体滑动,水又成了滑动面上的润滑剂。它也易在春天解冻季节发生,冬季结冰土层中孔隙扩张,但冰的保持力较大,不易发生崩塌。春天冰消融成水,一方面使内部的保持力下降,另一方面消融的水不仅留下更多孔隙,而且又作为润滑剂,使地层失稳而滑落。所以开春解冻期易发生山石崩塌和滑坡。
3.地裂地陷
地裂地陷分两种情况,一是自然地裂,一是人为地裂。
自然地裂通常指山顶、崖旁、坡上外侧山坡在重力驱使下使其外翻,而在其后缘裂开成缝,它往往是山崩、滑坡的先兆(前已叙述)。冰冻作用也能使山坡出现裂缝、张开。
地陷
一般房屋不会建在崖顶边缘,只有人口密集区的房子盖在斜坡上,此时地裂就会危及房屋的安全。影响房基最大的地裂是人工开矿引发的地面裂缝。山西最多的地基沉陷型地裂是地下采煤形成的采空区因失去支撑或支架朽烂而导致顶板地层大幅度下沉,诱发出一系列地裂缝,使墙体开裂、房屋倒塌等。南方不少深部采煤会造成大面积地面沉降,最终在地表形成新生湖泊。
地下水开采也会造成地面沉降,最显著的例子莫过于20世纪60~70年代上海大面积高楼沉降,由于深层地下水的淡水被超量开采,地面在地表高层建筑的重力作用下,采空(水)层被压缩,从而使地面下沉了20~50厘米。找到问题产生的根源后,上海市*采取地面水(黄浦江水)回灌手段来弥补地下水的超量开采,才阻止了地面继续沉降。严冬灌黄浦江低温水,到夏天用作凉水,可以降温;夏注黄浦江高温水,冬季供锅炉供暖。
4.喀斯特地陷
石灰岩区岩溶作用发育,许多大大小小的岩溶盆地,非专业人员很难看出当地平坦小平原原来是溶蚀作用造就的。
这些地区若遇上久旱不雨,地下水水位下降,都向深部的暗河汇集,暗河之上的岩溶水亏空,导致原来浮在其上的松散层垮落,于是出现了大大小小的圆形岩溶盆,反映在地表以上,是原来平坦的庄稼地忽然陷落或塌陷出一个个小型圆坑,并露出深深黑洞。
地下暗河含水层之上的庄稼地之所以会浮在含水层之上,是由于原来此溶落口被沙石卡住,因此沙石之上的泥土层得以平铺其上而不致漏下。地下含水层的水一旦流尽,本来堵口的沙石慢慢滑落,最后落入暗河中,落口之上的农用地因失去支撑而塌落下来,形成新的开口黑洞。所以房屋地基需先勘探,目的是探明地下有无岩溶漏斗。如果在漏斗上盖起高楼,沙土承受不了其上的重压,也会使房基局部下沉,导致地基裂缝、塌陷,危及楼房等地面建筑的稳定。
20世纪60年代末,我国执行“深挖洞”、“备战备荒”的方针,全国处处挖防空洞。许多防空洞未经过地下测绘,也没有完备的图纸留底备案,若未经勘探贸然在上面建房,将危及房基的稳定。如某单位1969年挖的防空洞,里面都用砖块砌洞壁、洞顶,到了20世纪80年代在上面建房而进洞做地下测量时,工程人员发现原来洞高1.9米已下沉了一半,整个拱圈只留下1米左右高度,测量工作需匍匐进行。当时砌砖拱时未作地基处理,是认为如此坚硬的红色黏土层不必夯实、加宽另作基础,不料20年间竟下沉了近1米,但在地表没有任何反应。因此,建设单位在开展工程建设前,对基础进行勘探是十分必要的。
再如某单位由于暖气管漏水,每年供暖季节期间都会有锅炉或管道漏水渗入地下,从而引发地下土层湿陷、地基错位,致使一栋楼房的墙体裂开10~20厘米宽的缝隙,裂缝两侧的对应层被错断后高差可达5~6厘米,最终该栋楼房不得不作危房处理。在拆掉楼房时,工程人员发现其房基还十分坚固,用12磅大锤根本砸不碎,最后用重型机械才能破碎。即便如此,它也因无法支撑整座楼房的重量而开裂,最终导致地基不均衡沉降、墙体开裂而使楼房报废。这一实例告诉我们,地基局部沉降的原因是复杂的,许多地面都丝毫也看不出来,即便是简单的地下水管道漏水也会造成地基开裂、楼房将倾。