发布网友 发布时间:2022-04-23 06:13
共4个回答
热心网友 时间:2022-06-24 06:17
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
有理数这一概念最早源自西方《几何原本》,明末数学家徐光启和学者利玛窦翻译《几何原本》,前6卷时的底本是拉丁文,他们将这个词的拉丁文( 即“logos”) 译为“理”,这个“理”在文言文中的意思是“比值”。
明末时期日本落后于我们,常常派使者来我国,这个有理数的概念也被他们拿走了,但是当时的日本学者对我国的文言文理解不够,直接将在文言文中表示“比值”的“理”直译成了“道理”的“理”。
直到清朝中期我国对有理数的翻译并没有错,可是到了清末,那时候中国落后于日本,于是清朝派留学生去日本,居然又将此名词重新传回中国,并且一直沿用至今。
以至于现在中日两国都用“有理数”和“无理数”这一错误的说法。所以说现在对“有理数”名称的理解的疑惑是历史原因造成的。
扩展资料
(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
整数包括正整数、零、负整数。例如:1、2、3、0、-1、-2、-3等等。
分数包括正分数和负分数,例如:1/2、0.6、-1/2、-0.6等等。
参考资料来源:百度百科-有理数
热心网友 时间:2022-06-24 07:52
有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。
有理数为整数(正整数、0、负整数)和分数的统称 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
注意:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。
如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a 0表明a是非负数;a 0表明a是非正数。
扩展资料
1、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
2、有理数加法的运算律:
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c)。
3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
4、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a/0没有意义。
参考资料来源:百度百科-有理数
热心网友 时间:2022-06-24 09:43
实数=整数+分数=正数+零+负数=有理数+无理数 有理数 要分正负,当然,0 和 无限循环小数 也要包括…在实数范围内,除了 无限不循环小数外 ,其它的都是 有理数 复数=实数+虚数 在 虚数中,我们(人为地?)规定 i*i=-1 虚数 还分 纯虚数 和 …热心网友 时间:2022-06-24 11:51
整数和分数统称为有理数,一切有理数都可以化成分数的形式。