什么是机器学习
发布网友
发布时间:2022-04-23 07:44
我来回答
共2个回答
热心网友
时间:2022-06-17 21:04
机器学习通过从数据里提取规则或模式来把数据转换成信息。主要的方法有归纳学习法和分析学习法。数据首先被预处理,形成特征,然后根据特征创建某种模型。机器学习算法分析收集到的数据,分配权重、阈值和其他参数达到学习目的。如果只想把数据分成不同的类,那么“聚类”算法就够了;如果需要预测,则需要一个“分类”算法。OpenCV库里面包含的是基于概率统计的机器学习方法,贝叶斯网络、马尔科夫随机场、图模型等较新的算法还在成长过程中,所以OpenCV还没有收录。
机器学习的算法有很多很多:1、Mahalanobis
2、K-means 非监督的聚类方法3、朴素贝叶斯分类器 特征是高斯分布&&统计上相互独立 条件比较苛刻4、决策数 判别分类器,根据阈值分类数据,速度快。ID3,C4.5
5、Boosting 多个判别子分类器的组合6、随机森林 由多个决策树组成7、人脸检测/Haar分类器 使用Boosting算法8、期望最大化EM 用于聚类的非监督生成算法
9、K-近邻 最简单的分类器10、神经网络(多层感知器) 训练分类器很慢,但是识别很快11、支持向量机 SVM 可以分类,也可以回归。通过分类超平面实现在高维空间里的最优分类
12、遗传算法 借鉴生物遗传机制 ,随机化非线性计算算法总之呢,个人觉得,机器学习、数据挖掘、模式识别、专家系统等方向和领域目前还是一种比较混乱的局面。学术界和商业界可能是不同的,关于算法的理论研究和使用这些方法生成商品是分别关注的。按照不同的领域、不同的方法可以划分出众多的分支。但是有一点是肯定的,这些在上世纪80年代提出来的公式和证明,如今正在变成一行行的代码,在一些猫(tomcat)、IIS等服务器的支持下,爬上了网络,到处寻觅对主人有用的信息,然后运送到网络中,最终生成产品,或者半产品。看看你电脑上的那根网线,它那么小,但是很难想象它从你的电脑上拿走了什么,又给你送来了什么。有些远了,继续说数据这些事。目前我接触过的算法有:(太多了,一时间真不好说出来) 神经网络(感知器、BP、RBF等很多的算法),遗传算法,支持向量机,层次分析法,各种回归,灰色系统(国产的方法,用于不确定知识的预测),粗糙集,贝叶斯网络,时间序列分析(也有很多)。学习和研究纸面的算法公式只是第一步,不可以忽略的基础,如何使用这些方法,在浩瀚的互联网上找到自己需要的、满足客户需要的数据和信息,从而让需要的人能够更加方便地得到,是今后的重头戏了。貌似很多的企业已经进军数据仓库这一块,并尝到了巨大的甜头,也有企业养着一队预备军,专注研发,随时准备奔赴前线,占领市场。无线网络市场的竞争已经到了激烈的局面,普适计算的时代也快到了吧。它依赖于硬件产品的可穿戴,和软件产品的内嵌、快速响应。总而言之,越来越人性化,谁都不愿意抱着笔记本电脑蹲厕所,是吧?
热心网友
时间:2022-06-17 21:04
付费内容限时免费查看回答您好,很高兴为您服务,我是希希百度知道资深解答家,累计服务3000人,能帮您很好的解答问题。这边打字需要时间,请您稍等一下哦~
您好,我们把讨论的范围限定在最常见的有监督学习的框架内,所谓的机器学习模型,本质上是一个函数,其作用是实现从一个样本 [公式] 到样本的标记值 [公式] 的映射,即 [公式]
当然这样说太笼统了,事实上机器学习模型需要在给定样本集合 [公式] 以及其对应标签 [公式] 的情况下,用假设已知的函数形式 [公式] , 尽可能拟合客观存在的映射函数 [公式] ,并且保证 [公式] 在未知同分布样本上具有尽可能相近的拟合能力
线性模型是最简单的,也是最基本的机器学习模型。其数学形式如下:g(X;W)=WTX。有时,我们还会在WTX的基础上额外加入一个偏置项b,不过只要把X扩展出一维常数分量,就可以把带偏置项的线性函数归并到WTX的形式之中。线性模型非常简单明了,参数的每一维对应了相应特征维度的重要性。但是很显然,线性模型也存在一定的局限性。
希望我的回答对您有所帮助~祝您天天开心快乐~[鲜花]