发布网友 发布时间:2022-12-04 20:43
共1个回答
热心网友 时间:2024-11-16 19:37
利用上海同步辐射装置的高亮度、短波长的同步辐射光在空间分辨上的优势,将可以进行许多前沿学科的探索。生物学家依托同步辐射光,能获得生物大分子的三维结构,进而研究其结构与功能之间的关系;而通过对病毒外壳蛋白、癌症基因及其表达物等病原三维结构的详细了解,有望设计出能与该病原特异结合的药物小分子,以阻断病原对细胞的感染,或抑制其致病的功能,这就是基于分子结构的药物设计新概念。材料科学家利用同步辐射光,可以清楚地揭示出材料中原子的精确构造和有价值的电磁结构参数等信息,它们既是理解材料性能的“钥匙”,也是设计新颖材料的原理来源,所以材料科学家和他们所服务的企业成了第三代同步辐射光源的大用户。
利用上海同步辐射装置的高亮度、窄脉冲的同步辐射光在时间分辨上的优势,将可以实现在分子水平上直接观察生命现象和物质运动过程。对于生命科学来说,静态地了解生物大分子或生物体的结构只是第一层次的研究,生物大分子或生物体结构变化的实时观察则是更高层次的研究。上海同步辐射装置为这一类动态过程的研究开启了大门,预计在不远的将来,人们将有可能像看电影那样直接观察生物大分子之间相互作用的精细过程,生命科学的研究将进入一个崭新的天地。对于材料科学来说,上海同步辐射装置将可以使我国材料科学家获得发生在原子水平的材料形成过程的动态图像,这些过程包括生长机制、相变过程、固态作用、裂缝扩散、高分子聚合物硬变、交界面过程和其他与时间相关的过程,它们是发明优秀新材料不可或缺的“源头信息”。而对于作为同步辐射光源的基本用户的化学科学来说,上海同步辐射装置将是我国化学科学跻身世界前列的必不可少的现代工具,将使我国化学科学家可以直接观测小至1立方微米的化学样品在化学反应期间原子的重新排列和位置,跟踪发生在快于10-9秒(十亿分之一秒)的化学过程,在最基础的水平上掌握形成新化学产品的整个过程。
利用上海同步辐射装置的高亮度、能量可选的同步辐射光,将大大提高对生命体内结构与形态的观察精度。通过同步辐射 X光显微成像和断层扫描成像技术能够直接获取活细胞结构图像。基于上海同步辐射装置强度高、能量可选的 X射线,发展起来的“双色减影心血管造影”新技术,可以为心血管病的早期诊断提供安全、快速、高清晰的诊断方法。最近,利用第三代同步辐射 X光源射线横向相干性好的特性,发展了 X射线相位反衬成像技术,能够清晰地拍摄出吸收反衬很弱的软组织如血管、神经等的照片,有望发展出不需要造影剂的“心血管造影术”。
利用上海同步辐射装置在空间分辨、时间分辨上的优势,将大大促进和加快我国的蛋白质结构基因组学研究。在过去的十多年里,基因测序是生物学的热门话题,人类基因组测序已完成,但这只是生命科学进入新时代的开端。因为要从根本上掌握生命现象基本规律,必须了解基因载体———蛋白质分子的三维结构,破解其结构与功能的关系。测定蛋白质分子三维结构的最有效的手段是 X射线蛋白质晶体衍射。由于蛋白质晶体体积小(几十个微米),且分子数目少,要求所用的 X射线光具有高亮度。如用 X光机束测一套蛋白质晶体衍射数据的话,需要几十个小时;用二代光源,需要几十分钟;用第三代光源则只要几秒钟。另外,同步光源还具有短脉冲(小于100皮秒)时间结构,为实时观测生物分子结构动态变化过程提供了可能性,将把生命科学研究带入一个崭新的时代。
同步辐射光源已经成为材料科学、生命科学、环境科学、物理学、化学、医药学、地质学等学科领域的基础和应用研究的一种最先进的、不可替代的工具,并且在电子工业、医药工业、石油工业、化学工业、生物工程和微细加工工业等方面具有重要而广泛的应用。上海同步辐射装置将成为我国迎接知识经济时代、创立国家知识创新体系的必不可少的国家级大科学装置。