数学分析证明题
发布网友
发布时间:2022-06-28 17:36
我来回答
共2个回答
热心网友
时间:2023-10-09 23:32
1,证明∵f'+(a)>0,∴当x→a+时,
lim[f(x)-f(a)]/(x-a)>0,则f(x1)>f(a)=K,∵f'_(b)>0,∴当x→b-时,彐x2<b,使
f(x2)<f(b)=K,由于f(x)在[a,b]上连续,所以在[x1,x2]上至少存在一点ξ,使得f(ξ)=K
热心网友
时间:2023-10-09 23:33
1、因为f'+(a)>0,则根据极限的保号性,存在c>0
使得当x∈(a,a+c)时,有f(x)>f(a)=K
同理,因为f'-(b)>0,存在d>0,使得当x∈(b-d,b)时,有f(x)<f(b)=K
不妨令x1∈(a,a+c),x2∈(b-d,b)
则f(x1)>K>f(x2)
因为f(x)在[a,b]上连续,则根据介值定理,存在ξ∈(x1,x2)⊆(a,b)
使得f(ξ)=K