发布网友 发布时间:2022-07-09 01:12
共1个回答
热心网友 时间:2022-07-13 21:25
第一步:等价变换,分子增加又减去同一项,巧妙处是这一项指数的选取,正好是要证明的右端。第二步:(1)把前面(a1+a2+...+ak)用上面假设n=k成立时较小的右端乘k代替,(a1+a2+...+ak)/k≥(a1a2...ak)^(1/k),两边乘k: a1+a2+...+ak≥k(a1a2...ak)^(1/k), 因此≥成立。(2)难点是a(k+1)+(k-1)(a1a2...a(k+1))^(1/(k+1))≥k[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k) 其实也很好证明(k-1)(a1a2...a(k+1))^(1/(k+1),看成是k-1个数,加上a(k+1),也是k个数。根据上面假设,n=k时,(a1+a2+...+ak)/k≥(a1a2...ak)^(1/k)是成立的,注意!!!a1,a2,...,ak只是正数的代表,不限于什么正数,换成k个数:a(k+1),和k-1个(a1a2...a(k+1))^(1/(k+1),这个不等式也是成立的!代换一下,就成了: a(k+1)+(k-1)(a1a2...a(k+1))^(1/(k+1))≥k[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k) 第三步:前面两项提取k之后成为:(a1a2...ak)^(1/k)+[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k) 使用前面一开始证明的n=2时的结果,a1+a2≥2√(a1a2)(当成公式,不是当成数)(a1a2...ak)^(1/k)+[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k) ≥2{(a1a2...ak)^(1/k)[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k)}^(1/2) =2{(a1a2...ak)^(1/k)[a(k+1)^(1/k)(a1a2...a(k+1))^[(k-1)/k(k+1)]]}^(1/2) =2{(a1a2...ak)^(1/k)[a(k+1)^(1/k)(a1a2...a(k+1))^[1/(k+1)-1/k(k+1)]]}^(1/2) =2{(a1a2...ak)^(1/k)[a(k+1)^(1/k)(a1a2...a(k+1))^[1/(k+1)-1/k+1/(k+1)]]}^(1/2) =2{(a1a2...aka(k+1))^(1/k)[(a1a2...a(k+1))^[2/(k+1)-1/k]]}^(1/2) =2{[(a1a2...a(k+1))^[2/(k+1)-1/k+1/k]]}^(1/2) =2{[(a1a2...a(k+1))^[2/(k+1)]]}^(1/2) =2(a1a2...a(k+1))^[1/(k+1)] 然后代入即可。这里的关机键是,把前面的结果,看成是公式,不是一一对应的符号!