问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

高中数学重点公式

发布网友 发布时间:2022-04-22 12:13

我来回答

1个回答

热心网友 时间:2022-05-21 16:25

公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα

公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα

公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

(以上k∈Z)

诱导公式记忆口诀

※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)

例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα

上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.

其他三角函数知识:

同角三角函数基本关系

⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα
tan2α=—————
1-tan^2(α)

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

1-cosα
sin^2(α/2)=—————
2

1+cosα
cos^2(α/2)=—————
2

1-cosα
tan^2(α/2)=—————
1+cosα

万能公式

⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)

1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)

2tan(α/2)
tanα=——————
1-tan^2(α/2)

万能公式推导

附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)

三倍角公式推导

附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化积公式

⒎三角函数的和差化积公式

α+β α-β
sinα+sinβ=2sin—----·cos—---
2 2

α+β α-β
sinα-sinβ=2cos—----·sin—----
2 2

α+β α-β
cosα+cosβ=2cos—-----·cos—-----
2 2

α+β α-β
cosα-cosβ=-2sin—-----·sin—-----
2 2

积化和差公式

⒏三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
250电脑摇头灯不用512控制台如何自走? 我怎么总这样想啊?? 那曲冬虫夏草那曲冬虫夏草生长环境 哪里的虫草最好 颈3以上椎体刺痛向前移位怎么办 cad2012 64位注册码 09VR 62JX YSHG X1F6 NXU9 UCNY 24CG QXPZ_百度知... 腰4椎体向前移位,与摔伤有关系吗 求高手指点2012cad是怎么了 是64位 官网下载 注册机破解 尾三椎体骨质欠连续远端稍向前移位 ...腰五椎移位,报告说腰五椎弓峡部不连续发椎体向前滑移。腰椎退行性改... 高中重要的公式和定理是哪些 高中重要的物理公式有哪些,标中文 高中化学最重要的公式有那些? 高中重点的数学公式 高中常用数学公式有哪些? 高中数学常用公式有哪些? 高中数学中主要有哪些重要的公式? 高中哪些公式是常用的及重要的? 高中哪些物理公式是常用的及重要的? 高中有哪些重要的数学公式? 高中物理常用公式有哪些 贵州2021年初级会计师报名时间是几月份 贵州中级会计师报名是现场还是网上 贵州考会计从业资格证怎么报名 贵州会计从业资格考试报名入口是哪个网站啊? 贵州2020初级会计考试报名流程是啥? 2022年贵州省cpa报名入口在哪里 《天》前期阵容攻略 元朝的散曲大家张养浩,后世之人为啥把他遗忘了? 404 Not Found 高中数学常用公式? 整个高中必须知道的数学公式有那些? 高中数学常用和重要的公式 如何安装2006版的腾讯QQ 大家win7下QQ都用哪个版本 电脑qq不能用怎么办 QQ版本有哪些 2008年版腾讯QQ下载 手机QQ下载按型号 如何在一台电脑上装两个版本的QQ 手机QQ(1.00(0))版怎么下载 腾讯QQ为什麽分版本? 电脑屏幕乱码怎么办? 电脑出现乱码和问号,是怎么回事 电脑开机乱码,出现问号 怎样在腾讯官网上找到合适的手机qq的所有版本 电脑里文件打开后出现乱码怎么办 电脑开机黑屏出现乱码怎么办 电脑开机出现乱码咋回事 电脑有的地方出现乱码是怎么回事