发布网友 发布时间:2022-09-21 19:53
共1个回答
热心网友 时间:2023-11-06 19:40
牛顿布莱尼茨公式通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。那么,牛顿布莱尼茨公式是什么呢?下面我整理了一些相关信息,供大家参考!
牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:
若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)
其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.
证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,
则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)
当Δx很小时,
F(x1)-F(x0)=F’(x1)*Δx
F(x2)-F(x1)=F’(x2)*Δx
……
F(xn)-F(x(n-1))=F’(xn)*Δx
所以,
F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx
当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)
牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到*。