发布网友 发布时间:2022-09-21 08:41
共1个回答
热心网友 时间:2023-11-16 00:56
在 R 中
标准化的主要目的是去除测序数据的技术偏差: 测序深度 和 基因长度 。
测序深度 :同一条件下,测序深度越深,基因表达的 read 读数越多。
基因长度 :同一条件下,不同的基因长度产生不对等的 read 读数,基因越长,该基因的read读数越高。
对给定的基因组参考区域,计算比对上的 read 数,又称为 raw count (RC)。
计数结果的差异的影响因素:落在参考区域上下限的read是否需要被统计,按照什么样的标准进行统计。
RPM方法:10^6标准化了测序深度的影响,但没有考虑转录本的长度的影响。
RPM适合于产生的read读数不受基因长度影响的测序方法,比如miRNA-seq测序,miRNA的长度一般在20-24个碱基之间。
RPKM/FPKM方法:10^3 标准化了基因长度的影响,10^6标准化了测序深度的影响。
FPKM方法与RPKM类似,主要针对双末端RNA-seq实验的转录本定量。在双末端RNA-seq实验中,有左右两个对应的read来自相同的DN*段。在进行双末端read进行比对时,来自同一DN*段的高质量的一对或单个read可以定位到参考序列上。为避免混淆或多次计数,统计一对或单个read比对上的参考序列片段(Fragment),来计算FPKM,计算方法同RPKM。
RPKM/FPKM适用于基因长度波动较大的测序方法,如lncRNA-seq测序,lncRNA的长度在200-100000碱基不等。
TPM的计算方法也同RPKM/FPKM类似,首先使用式2计算每个基因的表达值,去除基因长度的影响。随后计算每个基因的表达量的百分比,最后再乘以10^6,TPM可以看作是RPKM/FPKM值的百分比。
TPM值就是RPKM的百分比
相当于重新标准化的文库,保证每个样本中所有TPM的总和是相同的。
raw count 作为原始的read计数矩阵是一个绝对值,而绝对值的特点是规模不同(基因长度、测序深度),不可以比较。进行这些基因标准化方法的目的是将count矩阵转变为相对值,去除技术偏差的影响,使后续的差异分析具有统计学的意义。
limma/voom,edgeR,DESeq2,转录组差异分析的三大R包!