发布网友 发布时间:2022-04-23 01:08
共16个回答
懂视网 时间:2022-07-04 16:43
1、a的平方加b的平方=(a+b)平方-2ab或者=(a-b)平方+2ab,或者=c平方是勾股定理。
2、勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2,若a、b、c都是正整数,(a,b,c)叫做勾股数组。
3、在这个定理的证明中,我们需要如下四个辅助定理:
1.如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。
2.三角形面积是任一同底同高之平行四边形面积的一半。
3.任意一个正方形的面积等于其二边长的乘积。
4.任意一个矩形的面积等于其二边长的乘积。
热心网友 时间:2022-07-04 13:51
勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.
A²+B²=C²
C=√(A²+B²)
√(120²+90²)=√22500=√150²=150
例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)
3²+4²=5²
5=√(3²+4²)=√5²=5
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
热心网友 时间:2022-07-04 15:09
勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
扩展资料:
勾股定理简介:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:
百度百科勾股定理
热心网友 时间:2022-07-04 16:43
付费内容限时免费查看回答勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a²+b²=c²这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。
热心网友 时间:2022-07-04 18:35
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。热心网友 时间:2022-07-04 20:43
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。热心网友 时间:2022-07-04 23:07
勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。热心网友 时间:2022-07-05 01:49
勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。热心网友 时间:2022-07-05 04:47
最新勾股定理魏氏证法是上世纪70年代数学天才魏德武读小学期间在一次观摩木工师傅制作一把木质楼梯的过程中深受启发,其证法简捷、明了是所有勾股定理证法中无法比拟的首选方法:取四块全等直角三角形边长分别为a、b、c的楼梯脚板,分别组成二块全等长方形面积,即: ab+ad=2ab,然后再将原二块全等长方形面积进行形变,转化成一块大正方形面积减去中间一块小正方形面积;根据前后二块全等长方形面积大小不变的原理,构筑一个等量关系,即:2ab=c^2-(b-a)^2,移项化简得a^2+b^2=.:c^2这样既不要割补也无需求证,,就可轻而易举得到直角三角形三条边的数量关系。古人通常把直角三角形的二条直角边分别说成勾和股,所以魏氏勾股定理因此而得名。热心网友 时间:2022-07-05 08:01
勾股定理吗,就是勾三股四玄五。简单来说就是两个直角边的平方和会等于斜边的平方和。反过来,知道一个直角边,一条斜边,也可以知道另一条直角边的长。热心网友 时间:2022-07-05 11:33
勾股定理的公式是:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方;热心网友 时间:2022-07-05 15:21
勾股定理魏德武证法简明易懂,让人一目了然。用四块全等直角三角板,将每块直角三角形的三边长分别用小写a、b、c来表示,然后依次拼成两块长方形面积(ab+ab=2ab),再将其拆开重新组合,通过形变转化成边长为c的正方形面积,根据两块长方形面积前后不变的原理,无需割补,也不用求证就可轻而易举地得到一个恒等式,即:2ab=c^2-(b-a)^2化简得c^2=a^2+b^2。这就是举世无双的勾股定理魏氏证法!你会了吗?热心网友 时间:2022-07-05 19:25
1、勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。例:a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。热心网友 时间:2022-07-05 23:47
勾股定理魏德武证法到目前为止,可以说他的证法是所有勾股定理证法中最简捷、最实用的首选方法。用四块全等直角三角形边长分别为a、b、c,组成二块长方形面积(ab+ad=2ab),根据前后面积不变的原理,再将原四块全等直角三角形拆开,通过形变,从新组合成一块正方形面积;这样既不要割补也不需求证,,就可轻而易举地得出一个恒等式,即2ab=c^2-(b-a)^2,化简得:c^2=a^2+b^2.)。古人通常把直角三角形的二条边长分别说成勾和股,所以勾股定理的由来因此而得名。什么是勾股定理?勾股定理是怎么算出来的,你现在会了吗?热心网友 时间:2022-07-06 04:25
中国古代数学家最先提出了勾三股四弦五,国际上不叫这个名儿,我国那些人也没有进一步研究这个定理,仅仅停留在345的阶段,国外数学家后来就提出了A平方+B平方=C平方,知道其中俩,就能算出另外一个热心网友 时间:2022-07-06 09:19
首先用勾股定理计算的条件必须是直角三角形,设两条直角边的长为a.b,斜边为c.那么满足a的平方加b的平方等于c的平方。高中学的吧?