列方程时能用除号么
发布网友
发布时间:2022-09-18 15:06
我来回答
共4个回答
热心网友
时间:2023-10-22 08:06
可以的,但如果分母是代数的话这就是分式方程了。
解法:
一、鸡兔同笼问题
例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?
解法2 图形法
图形见
http://forum.cnool.net/topic_show.jsp?id=3441350&thesisid=407&flag=topic1
从图中看ACDF的面积=4×50=200(只脚), 比实际多出 GHEF的面积=200-140=60(只脚), AB=GH=60÷2=30(只鸡), BC=AC-AB=50-30=20(只兔)
解法2比解法1高级,算理是一样的。这里答案是图上算出的,显然这两种解法都要用纸和笔。不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。
解法3 公式法
老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。这个故事实际上老公公用了如下的公式。
脚数和÷2-头数和=兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。老公公又出了
(1)30个头,80只脚……。(兔10,鸡20)。
(2)100只脚,40个头……。(兔10,鸡30)。
(3)80个头,200只脚……。(兔20,鸡60)
小孙子们个个都愉快地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。这个公式是碰巧做对还是符合算理的呢?这是十分重要的。数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是补行的手续而已。”现在我们就来补行这个手续。
2鸡头=鸡脚。
4兔头=兔脚。
得:兔脚+鸡脚=2鸡头+4兔头
=2(鸡头+2兔头)。
这就证明了老公公归纳的公式。
说到鸡兔同笼问题,常常大家精神就紧张起来,以为是难题来了。现在掌握了规律其实不难,所以凡事都应去摸索规律,照规律办事。
鸡兔同笼问题在民间是当故事讲的,有没有实际价值呢?
或者解答思路是这样的:
假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。
《孙子算经》上的解法很巧妙,它是按公式:兔数 足数-头数来算的,具体计算是这样的:兔数 (只),鸡数=头数-免数=35-12=23,并且书中还给出了公式的来历:把足数除以2以后,每只鸡只剩下一足,每只兔剩下两足了,减去头数,就相当于每只鸡兔再减去一只,鸡足减完了,剩下的每只兔只有一足了,此时所剩足数恰好等于兔子头数.
鸡兔同笼的公式:
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数
总只数-兔的只数=鸡的只数
热心网友
时间:2023-10-22 08:06
不用方程来解鸡兔同笼,有两和方法.
1.(1)[总脚数-(总只数×一只鸡的脚数2)]÷(一只兔的脚数4-一只鸡的脚数2)
(2)[(总只数×一只兔的脚数4)-总脚数]÷(一只兔的脚数4-一只鸡的脚数2)
2.假设鸡缩起一只脚,兔缩起两只脚,那么总脚数就会减半.总脚数减去总头就
是兔的只数
热心网友
时间:2023-10-22 08:07
列方程时能用除号
热心网友
时间:2023-10-22 08:07
列方程能用除号吖