关于一个定理的证明
发布网友
发布时间:2022-09-14 21:33
我来回答
共3个回答
热心网友
时间:2024-11-24 02:34
四点共圆
四点共圆的定义
四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”
证明四点共圆有下述一些基本方法
证明四点共圆有下述一些基本方法:
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2 把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.
方法3 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
方法4 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法5 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.
方法6 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.
上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.
判定与性质:
圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180度,
角ABC=角ADC(同弧所对的圆周角相等)。
角CBE=角D(外角等于内对角)
△ABP∽△DCP(三个内角对应相等)
AP*CP=BP*DP(相交弦定理)
AB*CD+AD*CB=AC*BD(托勒密定理)
证明四点共圆的原理是什么
四点共圆
证明四点共圆基本方法:
方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
最佳答案
四点共圆的判定是以四点共圆的性质的基础上进行证明的。
四点共圆的性质:
(1)同弧所对的圆周角相等
(2)圆内接四边形的对角互补
(3)圆内接四边形的外角等于内对角
以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。
四点共圆的判定定理:
方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那末这二点和线段二端点四点共圆)
方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。那末这四点共圆)
我们 可都可以用数学中的一种方法;反证法开进行证明。
现就“若平面上四点连成四边形的对角互补。那末这四点共圆”证明如下(其它画个证明图如后)
已知:四边形ABCD中,∠A+∠C=180°
求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)
证明:用反证法
过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,
若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180°,
∵∠A+∠C=180°∴∠DC’B=∠C
这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。
∴C在圆O上,也即A,B,C,D四点共圆。
热心网友
时间:2024-11-24 02:34
我的是老师讲的原答案,绝对OK~
图在我的空间的默认相册里,你去翻翻很快的
汗,看我这么辛苦给你打出来(格式很正规哦),图都画好了,把分给我把,累死了!~~
证明: 作CM⊥AB CP⊥AP CN⊥BD
而易知MBCN四点共圆
且此圆的直径为BC,由正弦定理可知
MN=BC×sinB=BC×AD/2R 2式
同理 NP=CD×AB/2R 3式
MP=AC×BD/2R 4式
2式+3式+4式和AB×CD+AD×BC=AC×BD
得(化简略)MN+NP=MP
得M N P三点共线
由西姆松逆定理可知ABCD四点共线
热心网友
时间:2024-11-24 02:34
看看这个吧
希望对你有帮助
http://ke.baidu.com/view/148250.htm
参考资料:百度百科