发布网友 发布时间:2022-04-22 23:21
共1个回答
热心网友 时间:2023-07-15 03:09
化学分析仪器即AAS。
仪器之一介绍:
珀金埃尔默公司由珀金·理查德和埃尔默·查理斯于1937年4月创立,很快成为美国精密光学仪器的主要供应商,1944年成功推出世界上第一台商用红外光光度计-12型,这项新技术就是现代化学分析基本手段的鼻祖。1955年5月,珀金埃尔默公司推出世界上第一台商用气相色谱仪-154型。1957年匹兹堡会议上,公司推出世界首台双光束红外光谱仪137型。与此同时,珀金埃尔默公司成为世界上第一家进入国际市场的科学仪器制造商。 60年代珀金埃尔默公司以其研制的世界第一台原子吸收分析仪-AA303型占据了世界分析仪器行业领先地位。1972年,公司进入液色相谱市场,成功地推出最早的带梯度泵的液色相谱仪1220型。1975年,公司最早将微机技术引入460型AAS,使分析更轻松更有效。
数十年来,PerkinElmer公司以当今世界最新的科学技术,在原子光谱仪器与分析技术的发展领域中,始终处于世界领先地位。从世界上第一台双光束原子吸收光谱仪的问世到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正;从纵向加热石墨炉到横向加热无温度梯度石墨炉;从单道扫描ICP到全谱ICP;从ICP到ICP-MS;从光电倍增管到半导体固态检测器。跨越一个又一个里程碑。这累累硕果,已为遍布全球的成千上万个实验室所分享,有力地推动了原子光谱分析技术的发展。PerkinElmer公司将继续保持这一技术优势,以更多更先进的精良仪器为分析工作者提供更加优秀的服务。
在AAS的发展过程中,PerkinElmer公司形成了一系列的专利技术,确保了在AAS领域的领先地位。
完美的STPF石墨炉系统:AAnalyst配备有Massmann型石墨炉(HGA)和高强度的连续光源校正装置,这种经过全球上千个实验室工作检验的石墨炉系统具有极高的性能价格比。
AAnalyst600/800在采用横向加热技术石墨炉(THGA)的同时,相应地采用了独特的纵向Zeeman效应背景校正,组成了当今世界上最完美的石墨炉系统,它的无可比拟的优异性能适合于追求极低的检出限、分析基体特别复杂的样品、要求校正结构背景的使用者。
HGA和THGA石墨炉系统都使用一体化平台石墨管,这种性能极其优越的石墨管由单块的高强度石墨经过精密的机械加工而成,管和平台都有热解涂层,所有元素—包括高温元素都能在平台上(STPF条件下)进行原子化。由于平台是圆弧形的,一次进样的最大体积可达50微升,可进一步降低检出限。 石墨炉系统使用了PerkinElmer获得专利的TTC(真实温度控制)技术。仪器独特的反馈控制系统每隔10毫秒检测一次石墨炉的各个重要参数,包括石墨管两端的电压、石墨管的电阻,石墨管的发射和冷却温度。并与参比数据对比,据此对加在石墨管上的电源自动、快速作出调整,保证无论您使用哪一台仪器,是今天还是明天,都能得到恒定的、重复性特别好的数据。
*性的实时双光束光学系统 新颖、独特的“实时”双光束系统,只使用一块半透半反镜,不需要机械斩波器,免除机械噪声对仪器带来不良的影响。样品光束和参比光束同时通过单色器并在完全相同的时间进行测量,有效地增加了积分时间而不增加测量时间,进一步提高读数的稳定性,大大提高了信噪比。PerkinElmer公司的这种设计划分出了实时双光束与交替双光束的不同时代。
性能优越的新型固态检测器带有低噪声CMOS电荷放大器的最优化固态检测器,其光敏表面能在紫外区和可见区提供最大的量子效率和灵敏度,具有极好的信噪比。即使象As和Ba这样通常较难测定的元素也能以极高的信噪比进行轻松自如的日常分析。
技术参数
* 波长范围: 189-900nm
* 全面兼容国产的氢化物发生器和国产灯,Winlab 32软件可以用峰面积进行计算,也可以使用峰高进行计算,利用国产的氢化物发生器和国产的As灯测量砷的标准曲线,砷的标准溶液浓度分别为2、4、6ppb,线性系数优于0.9999。
* FIFU功能:具有FIAS与石墨炉联用的功能,可对元素进行全自动的在线预浓缩。氢化物发生过程不受还原速度的影响,样品无需事先还原即可直接进行分析。As(V)、Sb(V)、Se(IV)和Hg(II)等直接分析的检出限为ppt量级。
主要特点
1. 狭缝:狭缝的宽度自动选择,狭缝的高度自动选择。
2. 检测器:全谱高灵敏度阵列式多象素点CCD固态检测器,含有内置式低噪声CMOS电荷放大器阵列。样品光束和参比光束同时检测。
3. 灯选择:内置两种灯电源,可连接空心阴极灯和无极放电灯;通过WinLab32软件由计算机控制灯的选择和自动准直,可自动识别灯名称和设定灯电流推荐值。
燃烧系统:可调式通用型雾化器,高强度惰性材料预混室,全钛燃烧头。
排液系统:排液系统前置以利于随时检测
4. 火焰进样系统:火焰系统具有悬浮液直接进样功能,可以直接分析悬浮奶粉等,并有实际应用。
5. 石墨炉: 内、外气流由计算机分别单独控制。管外的保护气流防止石墨管被外部空气氧化。从而延长管子寿命,内部气流则将干燥和灰化步骤气化的基体成份清出管外。石墨炉的开、闭为计算机气动控制以便于石墨管的更换。
6. 电源:石墨炉电源内置,整个仪器为一个整体。
温度控制 红外探头石墨管温度实时监控,具有电压补偿和石墨管电阻变化补偿功能。
7. 石墨管:标准配置为一体化平台(STPF)热解涂层石墨管
8. 石墨炉进样系统:石墨炉进样系统具有悬浮液直接进样功能,可以直接分析果酒、果汁、食用植物油、悬浮奶粉等,并有实际应用。
9. 联用:无论火焰还是石墨炉,均具有与FIAS、FIMS、气相色谱(GC)、液相色谱(HPLC)、热分析(TA)等仪器联用的功能和接口。FIAS与紫外联用,具有亚*根、氨基酸的分析功能。具有间接法分析硫酸根、磷酸根、氯离子的能力。 一、分子吸收光谱的产生
(一)分子能级与电磁波谱
分子中包含有 原子和电子,分子、原子、电子都是运动着的物质,都具有能量,且 都是量子化的。在一定的条件下,分子处于一定的运动状态,物质分子内部运动状态有三种形式:
①电子运动:电子绕原子核作相对运动;
②原子运动:分子中原子或原子团在其平衡位置上作相对振动;
③分子转动:整个分子绕其重心作旋转运动。
所以:分子的能量总和为
E分子 = Ee +Ev +Ej +⋯ (E0 +E平) (3)
分子中各种不同运动状态都具有一定的能级。三种能级:电子能级 E(基态 E1 与激发态 E2)
振动能级 V= 0,1,2,3 ⋯
转动能级 J = 0,1,2,3 ⋯
当分子吸收一个具有一定能量的光量子时,就有较低的能级基态能级 E1 跃迁到较高的能级及激发态能级 E2 ,被吸收光子的能量必须与分子跃迁前后的能量差∆E 恰好相等,否则不能被吸收。
图1 双原子分子的三种能级跃迁示意图 对多数分子 对应光子波长 光 谱 ∆E 约为1~20eV 1.25 ~ 0.06㎛ 紫外、可见区(电子)
∆E 约为0.5~1eV 25 ~ 1.25㎛ (中)红外区 (振动)
∆E约为10-4~0.05eV 1.25cm~ 25㎛ (远)红外区(转动) 分子的能级跃迁是分子总能量的改变。当发生电子能级跃迁时,则同时伴随有振动能级和转动能级的改变,即 “电子光谱”——均改变。
因此,分子的“电子光谱” 是由许多线光谱聚集在一起的带光谱组成的谱带,称为“带状光谱”。
由于各种物质分子结构不同,对不同能量的光子有选择性吸收。吸收光子后产生的吸收光谱不同。利用物质的光谱进行物质分析的依据。
二、紫外-可见吸收光谱与有机分子结构的关系
(一)电子跃迁的类型
许多有机化合物能吸收紫外-可见光辐射。有机化合物的紫外-可见吸收光谱主要是由分子中价电子的跃迁而产生的。
分子中的价电子有:
成 键 电 子: s 电子、p 电子(轨道上能量低)
未成键电子: n 电子( 轨道上能量较低)
这三类电子都可能吸收一定的能量跃迁到能级较高的反键轨道上去。分子中价电子跃迁:
1. s - s* 跃迁
s-s*的能量差大,所需能量高,吸收峰在远紫外 (l<150nm)
饱和烃只有s 、s* 轨道,只能产生s - s*跃迁,例如:
甲烷 吸收峰在 125nm;乙烷 吸收峰在 135nm ( < 150nm )
( 因空气中O2对< 150nm辐射有吸收,定量分析时要求实验室有真空条件,要求一般难达到)
2. p-p* 跃迁
p-p*能量差较小,所需能量较低,吸收峰紫外区 (l200nm左右)
不饱和烃类分子中有p电子,也有p* 轨道,能产生p-p*跃迁:CH2=CH2 ,吸收峰 165nm。(吸收系数 e 大,吸收强度大,属于强吸收)
3. n- s*跃迁
n- s* 能量较低,收峰紫外区 (l 200nm左右) (与p-p*接近)
含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生。
s-s* 跃迁外,同时能产生n- s *跃迁,例如:三甲基胺 (CH3)3N- 的 n- s* 吸收峰在 227 nm, e 约为900 L/mol·cm ,属于中强吸收。
4. n- p*跃迁
n- p*能量低,吸收峰 在 近紫外、可见区 (l 200 ~ 700nm)含有杂原子的不饱和基团,如 -C=O等,例如: 丙酮: n- p*跃迁, lmax 280nm左右(同时也可产生p-p*跃迁),属于弱吸收, e < 500 L/mol·cm 。
各种跃迁所需能量大小次序为: s - s* > n- s* ³ p-p* > n- p*
紫外-可见吸收光谱法在有机化合物中应用主要以:p-p* 、n- p* 为基础。
(二)吸收峰的长移和短移
长移:吸收峰向长λ 移动的现象,又称红移;
短移:吸收峰向短λ移动的现象,又称紫移;
增强效应:吸收强度增强的现象;
减弱效应:吸收强度减弱的现象。
(三)发色团和助色团
p-p* 、n- p*跃迁都需要有不饱和的官能团以提供 p 轨道,因此,轨道的存在是有机化合物在紫外-可见区产生吸收的前提条件。
1.发色团:具有 p 轨道的不饱和官能团称为发色团。
主要有: -C=O,-N=N-, -N=O等。
但是,只有简单双键的化合物生色作用很有限,其有时可能仍在远紫外区,若分子中具有单双键交替的 “共轭大p键” (离域键)时,
如: 丁二稀 CH2=CH—CH=CH2
由于大p键中的电子在整个分子平面上运动,活动性增加,使 p与 p* 间的能量差减小,使 p- p* 吸收峰长移,生色作用大大增强。
2. 助色团
本身不“生色”,但能使生色团生色效应增强的官能团 ——称为助色团
主要有: – OH、 –NH2、 –SH、 –Cl、 –Br 等
(具有未成键电子轨道 n 的饱和官能团)
当这些基团单独存在时一般不吸收紫外-可见区的光辐射。但当它们与具有轨道的生色基团相结合时,将使生色团的吸收波长长移(红移), 且 使吸收强度增强。
(助色团至少要有一对与生色团 p 电子作用的孤对电子) 一、紫外吸收光谱的产生
吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。
二、电子跃迁类型
1. 分子轨道
有机分子中常见的分子轨道:
σ轨道、π轨道和非键轨道 (未共用电子对n)
分子轨道图:
2. 电子跃迁(transition)类型
(1)σ~σ*跃迁:
由饱和键产生,能级差大,吸收光波波长短,吸收峰多处于真空紫外区。
(2)n~ σ*跃迁:
含N, O, S, X的化合物中,吸收带较弱。
CH3OH CH3Cl CH3Br CH3I
λmax 177 173 202 257
εmax 200 264 378 900
(3) π~π*跃迁:
不饱和化合物,尤其是存在共轭体系的化合物。
εmax较大,λmax较大。
(4) n~ π*跃迁:
含π键和 n 电子的体系。
λmax较大,εmax较小。
能级跃迁图:
三、吸收带(bands)
1. R吸收带(Radikalartin):由n→π*跃迁产生,强度弱, log 1
2. K吸收带(Konjugierte):由π→π*跃迁产生,强度强, log > 4
3. B吸收带(Benzenoid):苯环π→π*跃迁产生,230-270nm,中心在254nm处,宽而弱,有精细结构,是苯环的特征吸收
4. E吸收带(Ethylenic):芳环中碳碳双键π→π*跃迁产生,在184(E1)和203(E2)nm处。
四、有关术语
1. 发色团(chromophore)
C=C、C=O、COOH、COOR、NO2、N=N、芳基等含有p电子的基团。
2. 助色团(auxochrome) OH、OR、X、NH2、NO2、SH等含有n电子的基团,与发色团相连可使最大吸收波长红移。
3. 红移(red shift or bathochromic shift)
最大吸收波长向长波移动。
4. 兰移(blue shift or hypsochromic shift)
最大吸收波长向短波移动。
5.增色效应:使吸收带的吸收强度增加的效应
6.减色效应:使吸收带的吸收强度降低的效应
常见生色团和助色团
影响紫外吸收光谱的因素
跃迁的类型
发色团和助色团的影响
样品溶液浓度的影响
共轭体系的形成使吸收红移
空间效应:空间位阻,
外部因素:溶剂效应 ,PH值影响。