发布网友 发布时间:2022-08-28 03:22
共1个回答
热心网友 时间:2024-11-18 14:18
一、含义不同:
两者都是通过给定n+1个互异的插值节点,求一条n次代数曲线近似地表示待插值的函曲线,这就叫做代数插值;Lagrange插值代数和Newton法插值都属于代数插值的范畴。
Lagrange插值和Newton法插值的结果和余项都是一致的,因为都是利用n次多项式插值,所以一致。
二、计算不同:
Lagrange插值法是通过构造n+1个n次基本多项式,线性组合而得到的。而Newton法插值是通过求各阶差商,递推得到的一个f(x)=f(x0)+(x-x0)f[x0,x1]+(x-x0)(x-x1)f[x0,x1,x2]+(x-x0)(x-x(n-1))f[x0,x1,xn]这样的公式,代进去就可以得到。
牛顿插值法的特点在于:
每增加一个点,不会导致之前的重新计算,只需要算和新增点有关的就可以。
假设已知n+1n+1个点相对多项式函数ff的值为:(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),(xn,f(xn)),求此多项式函数f。
先从求满足两个点(x0,f(x0)),(x1,f(x1))的函数f1(x)说起:
假设f1(x)=f(x0)+b1(x−x0)f1(x)=f(x0)+b1(x−x0),增加一个点,(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),求满足这三个点的函数f2(x):
假设f2(x)=f1(x)+b2(x−x0)(x−x1)
以上内容参考:百度百科-牛顿插值法