发布网友 发布时间:2022-08-30 16:19
共1个回答
热心网友 时间:2024-10-30 15:35
主成分分析( Principal components analysis),简称PCA,是最主要的数据降维方法之一。本文从PCA的思想开始,一步一步推导PCA。
对于 , 。我们希望 从 维降到 维,同时希望信息损失最少。比如,从 维降到 :
我们既可以降维到第一主成分轴,也可以降维到第二主成分轴。那么如何找到这这些主成分轴并且选择最优成分轴呢?
直观上,第一主成分轴 优于第二主成分轴,即具有最大可分性。
下面解决一些基本概念。
欲获得原始数据新的表示空间,最简单的方法是对原始数据进行线性变换(基变换):
其中 是原始样本, 是基向量, 是新表达。
数学表达:
其中 是行向量,表示第 个基, 是一个列向量,表示第 个原始数据记录.
当 时即 基的维度 < 数据维度时,可达到降维的目的。即:
以直角坐标系下的点(3,2)为例,欲将点(3,2)变换为新基上的坐标,就是用(3,2)与第一个基做内积运算,作为第一个新的坐标分量,然后用(3,2)与第二个基做内积运算,作为第二个新坐标的分量。
可以稍微推广一下,如果我们有m个二维向量,只要将二维向量按列排成一个两行m列矩阵,然后用“基矩阵”乘以这个矩阵,就得到了所有这些向量在新基下的值。例如(1,1),(2,2),(3,3),想变换到刚才那组基上,则可以这样表示:
回顾一下,我们的目的是希望在降维过程中损失最少,换言之,我们希望投影后的数据尽可能分散开。这种分散程度可以用方差来表达,方差越大,数据越分散。
随机变量 表达了 的取值与其数学期望之间的偏离程度。若 较小,意味着 的取值主要集中在期望 也就是 的附近,反之,若 较大,意味着 的取值比较分散。
为了避免过于抽象,我们以一个具体的例子展开。假设我们5个样本数据,分别是 ,将它们表示成矩阵形式:
为了后续处理方便,我们首先将每个字段内所有值都减去字段均值,其结果是将每个字段都变为均值为0.
我们看上面的数据,设第一个特征为 ,第二个特征为 , 此时某一个样本可以写作:
且特征 的均值为2, 特征 的均值为3,所以变换后:
协方差(Covariance)在 概率论 和 统计学 中用于衡量两个变量的总体 误差 。
比如对于二维随机变量 ,特征 除了自身的数学期望和方差,还需要讨论 之间互相关系的数学特征。
当 时,变量 完全独立,这也是我们希望达到的优化目标。
方差 是协方差的一种特殊情况,即当两个变量是相同的情况:
对于二维随机变量 ,
对于n维随机变量 ,
可见,协方差矩阵是 行 列的对称矩阵,主对角线上是方差,而协对角线上是协方差。
依然我们以一个具体的例子展开,还是这5个样本数据, , ,将它们去中心化后表示成矩阵形式:
那如果有 个样本的话,
对 做一些变换,用 乘以 的转置,并乘上系数1/m:
这不正是协方差矩阵嘛!
现在我们可以说:
回顾一下:
设 的协方差矩阵为 , 的协方差矩阵为 ,且 。
我们要找的 不是别的,而是能让原始协方差矩阵对角化的 。
现在所有焦点都聚焦在了协方差矩阵对角化问题上。
由上文知道,协方差矩阵 是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质:
1)实对称矩阵不同特征值对应的特征向量必然正交。
2)设特征向量 重数为 ,则必然存在 个线性无关的特征向量对应于 ,因此可以将这 个特征向量单位正交化。
由上面两条可知,一个 行 列的实对称矩阵一定可以找到 个单位正交特征向量,设这 个特征向量为 ,我们将其按列组成矩阵:
则对协方差矩阵 有如下结论:
其中 为对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)。
结合上面的公式:
其中, 为对角矩阵,我们可以得到:
是协方差矩阵 的特征向量单位化后按行排列出的矩阵,其中每一行都是 的一个特征向量。如果设 按照 中特征值的从大到小,将特征向量从上到下排列,则用 的前 行组成的矩阵乘以原始数据矩阵 ,就得到了我们需要的降维后的数据矩阵 。
总结一下PCA的算法步骤:
设有 条 维数据。
1)将原始数据按列组成 行 列矩阵X
2)将 的每一行(代表一个特征)进行零均值化,即减去这一行的均值
3)求出协方差矩阵
4)求出协方差矩阵 的特征值及对应的特征向量
5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前 行组成矩阵
6) 即为降维到 维后的数据
这里以上文提到的:
,将它们表示成矩阵形式:
我们用PCA方法将这组二维数据其降到一维。
为了后续处理方便,我们首先将每个特征内所有值都减去字段均值,其结果是将每个字段都变为均值为0.
因为这个矩阵的每行已经是零均值,这里我们直接求协方差矩阵:
对于矩阵 :
和 分别是特征值和特征向量,
,则:
为了使这个方程式有非零解,矩阵 的行列式必须是0:
即:
则:
分解得:
找到2个特征值, , ,
when :
即:
则:
和 可以取任意值,我们取归一化的 和 ,即: ,
此时 和
when :
即:
则:
和 可以取任意值,我们取归一化的 和 ,即:
此时 和
所以:
可以验证协方差矩阵C的对角化:
最后我们用 的第一行乘以数据矩阵,就得到了降维后的表示:
降维投影结果如下图:
热心网友 时间:2024-10-30 15:35
主成分分析( Principal components analysis),简称PCA,是最主要的数据降维方法之一。本文从PCA的思想开始,一步一步推导PCA。
对于 , 。我们希望 从 维降到 维,同时希望信息损失最少。比如,从 维降到 :
我们既可以降维到第一主成分轴,也可以降维到第二主成分轴。那么如何找到这这些主成分轴并且选择最优成分轴呢?
直观上,第一主成分轴 优于第二主成分轴,即具有最大可分性。
下面解决一些基本概念。
欲获得原始数据新的表示空间,最简单的方法是对原始数据进行线性变换(基变换):
其中 是原始样本, 是基向量, 是新表达。
数学表达:
其中 是行向量,表示第 个基, 是一个列向量,表示第 个原始数据记录.
当 时即 基的维度 < 数据维度时,可达到降维的目的。即:
以直角坐标系下的点(3,2)为例,欲将点(3,2)变换为新基上的坐标,就是用(3,2)与第一个基做内积运算,作为第一个新的坐标分量,然后用(3,2)与第二个基做内积运算,作为第二个新坐标的分量。
可以稍微推广一下,如果我们有m个二维向量,只要将二维向量按列排成一个两行m列矩阵,然后用“基矩阵”乘以这个矩阵,就得到了所有这些向量在新基下的值。例如(1,1),(2,2),(3,3),想变换到刚才那组基上,则可以这样表示:
回顾一下,我们的目的是希望在降维过程中损失最少,换言之,我们希望投影后的数据尽可能分散开。这种分散程度可以用方差来表达,方差越大,数据越分散。
随机变量 表达了 的取值与其数学期望之间的偏离程度。若 较小,意味着 的取值主要集中在期望 也就是 的附近,反之,若 较大,意味着 的取值比较分散。
为了避免过于抽象,我们以一个具体的例子展开。假设我们5个样本数据,分别是 ,将它们表示成矩阵形式:
为了后续处理方便,我们首先将每个字段内所有值都减去字段均值,其结果是将每个字段都变为均值为0.
我们看上面的数据,设第一个特征为 ,第二个特征为 , 此时某一个样本可以写作:
且特征 的均值为2, 特征 的均值为3,所以变换后:
协方差(Covariance)在 概率论 和 统计学 中用于衡量两个变量的总体 误差 。
比如对于二维随机变量 ,特征 除了自身的数学期望和方差,还需要讨论 之间互相关系的数学特征。
当 时,变量 完全独立,这也是我们希望达到的优化目标。
方差 是协方差的一种特殊情况,即当两个变量是相同的情况:
对于二维随机变量 ,
对于n维随机变量 ,
可见,协方差矩阵是 行 列的对称矩阵,主对角线上是方差,而协对角线上是协方差。
依然我们以一个具体的例子展开,还是这5个样本数据, , ,将它们去中心化后表示成矩阵形式:
那如果有 个样本的话,
对 做一些变换,用 乘以 的转置,并乘上系数1/m:
这不正是协方差矩阵嘛!
现在我们可以说:
回顾一下:
设 的协方差矩阵为 , 的协方差矩阵为 ,且 。
我们要找的 不是别的,而是能让原始协方差矩阵对角化的 。
现在所有焦点都聚焦在了协方差矩阵对角化问题上。
由上文知道,协方差矩阵 是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质:
1)实对称矩阵不同特征值对应的特征向量必然正交。
2)设特征向量 重数为 ,则必然存在 个线性无关的特征向量对应于 ,因此可以将这 个特征向量单位正交化。
由上面两条可知,一个 行 列的实对称矩阵一定可以找到 个单位正交特征向量,设这 个特征向量为 ,我们将其按列组成矩阵:
则对协方差矩阵 有如下结论:
其中 为对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)。
结合上面的公式:
其中, 为对角矩阵,我们可以得到:
是协方差矩阵 的特征向量单位化后按行排列出的矩阵,其中每一行都是 的一个特征向量。如果设 按照 中特征值的从大到小,将特征向量从上到下排列,则用 的前 行组成的矩阵乘以原始数据矩阵 ,就得到了我们需要的降维后的数据矩阵 。
总结一下PCA的算法步骤:
设有 条 维数据。
1)将原始数据按列组成 行 列矩阵X
2)将 的每一行(代表一个特征)进行零均值化,即减去这一行的均值
3)求出协方差矩阵
4)求出协方差矩阵 的特征值及对应的特征向量
5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前 行组成矩阵
6) 即为降维到 维后的数据
这里以上文提到的:
,将它们表示成矩阵形式:
我们用PCA方法将这组二维数据其降到一维。
为了后续处理方便,我们首先将每个特征内所有值都减去字段均值,其结果是将每个字段都变为均值为0.
因为这个矩阵的每行已经是零均值,这里我们直接求协方差矩阵:
对于矩阵 :
和 分别是特征值和特征向量,
,则:
为了使这个方程式有非零解,矩阵 的行列式必须是0:
即:
则:
分解得:
找到2个特征值, , ,
when :
即:
则:
和 可以取任意值,我们取归一化的 和 ,即: ,
此时 和
when :
即:
则:
和 可以取任意值,我们取归一化的 和 ,即:
此时 和
所以:
可以验证协方差矩阵C的对角化:
最后我们用 的第一行乘以数据矩阵,就得到了降维后的表示:
降维投影结果如下图: