发布网友 发布时间:2022-08-30 14:14
共2个回答
热心网友 时间:2024-10-28 19:38
边缘密度函数定义
边缘密度函数是指边缘分布函数,定义是:如果二维随机变量X,Y的分布函数F{x,y}为已知,那么随机变量x,y的分布函数Fx{x}和Fy{y}分别由F{x,y}求得。则Fx{x}和Fy{y}为分布函数F{x,y}的边缘分布函数。
联合密度函数定义
联合密度函数是指联合分布函数,定义:随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。
如果两随机变量相互独立,则联合密度函数等于边缘密度函数的乘积,即f(x,y)=f(x)f(y)。
如果两随机变量是不独立的,那是无法求的。或者没有相互独立的条件就必须另给条件,否则无法计算,因为无法由边缘分布确定联合分布。
热心网友 时间:2024-10-28 19:38
如果两随机变量相互独立,则联合密度函数等于边缘密度函数的乘积,即f(x,y)=f(x)f(y)。