发布网友 发布时间:2022-09-04 09:22
共1个回答
热心网友 时间:2024-12-05 01:15
由于分子结构与其化学键的红外振动频率密切相关,二维红外光谱能提供关于复杂化学体系的超快结构动态变化、分子超快振动耦合及振动动力学、以及振动驰豫过程等信息,反映的是在飞秒至皮秒时间轴上的分子结构动态信息。
作为一种涵盖连续波段的相关谱图,超快二维红外光谱显著区别于传统的泵浦-探测(pump-probe)技术,兼具极高的时间及频率分辨率。又因为红外辐射的能量不会扰动室温平态下化学体系的热力学平衡,二维红外光谱极其适用于在线监测平衡态体系下的精细化学结构在皮秒时间尺度上的动态变化,比如室温下水分子氢键网络的超快结构涨落 ,蛋白质在水中的超快构象变换,测量碳碳单键的旋转速率 ,单分子层的构象动态,溶剂溶质间氢键的生成与断裂,两相界面上溶剂分子的动态排布等等。
由于分子内化学键之间能量传递的动态信息也反映了分子的结构,二维红外光谱也被应用于辅助X射线衍射技术解析蛋白质的静态结构。随着近年的发展,二维红外技术还被应用于非平衡态体系的动态监测,例如T-jump 2D-IR 与UV-pump 2D-IR,分别是应用高强度红外激光脉冲的热效应以及紫外激光脉冲的高光子能量触发非平衡态化学事件,随后再进行二维红外观测的四阶光谱技术。
二维红外光谱的观测时间窗口受所选红外振动模式的弛豫寿命*,一般从几皮秒到上百皮秒不等。二维红外光谱无法监测过于缓慢的动态事件,其对应的时间尺度与更快速的二维紫外-可见光谱(飞秒)以及更慢的二维核磁共振光谱(纳秒以上)形成互补。