发布网友 发布时间:2022-08-17 20:07
共1个回答
热心网友 时间:2023-04-27 14:18
不等式的性质与一元二次不等式知识
不等式的基本性质点
1.不等式的定义:a-b>0
a>b, a-b=0
a=b, a-b<0
a
① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
如证明y=x3为单增函数,
设x1, x2∈(-∞,+∞), x1)2+x22]
再由(x1+)2+x22>0, x1-x2<0,可得f(x1)
2.不等式的性质:
① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1) a>b
b
(2) a>b, b>c
a>c (传递性)
(3) a>b
a+c>b+c (c∈R)
(4) c>0时,a>b
ac>bc
c<0时,a>b
ac更多频道:
运算性质有:
(1) a>b, c>d
a+c>b+d。
(2) a>b>0, c>d>0
ac>bd。
(3) a>b>0
an>bn (n∈N, n>1)。
一元二次不等式可以用配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。
公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b²-4ac<0的方
程)。求根公式:x=-b±√(b^2-4ac)/2a。
数轴穿根解一元二次不等式步骤:
1)把二次项系数变成正的;
2)画数轴,在数轴上从小到大依次标出所有根;
3)从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿
过,偶次幂就跨过);
4)注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。
一元二次不等式也可通过一元二次函数图象进行求解:通过看图象可知,二次函数图象与X轴的
两个交点,然后根据题中所需求"<0"或">0"而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。
解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,
将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简
化。