发布网友 发布时间:2023-03-19 15:19
共1个回答
热心网友 时间:2023-11-18 04:19
三角形动点问题的解题技巧如下文:
初中数学中,动点问题一直热门考点,而且动点问题也是学习的一个难点,在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并且对这些点在运动变化的过程中,存在着等量关系,变量关系,
以及对图形的特殊状态、图形间的特殊关系进行研究考查,具有较强的综合性。常见的题型是:动态几何题是指随着几何图形中某一个(或几个)元素的运动,导致问题结论改变或不变的几何题。
解决动点问题常见的答题思路是:变化前的结论及说理过程对变化后的结论起到重要作用;在图形变化前后,明确哪些关系发生变化,哪些关系没有发生变化,变化前的等角、等线段在变化后是否还存在;
几种变化图形之间,说理思路存在内在联系,变化后的说理思路可模仿与借鉴变化前的说理过程,变化后的结论有时发生变化,有时不发生变化。
例题1:如图,已知△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点,点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A以a cm/s的速度运动,设运动的时间为t s。
问:(1)求CP的长,(2)若以C.P.Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求a的值。
【解析】:本题考查的是动点的为题,点P在线段BC上运动,根据距离=速度*时间,可得BP=3t cm,又已知BC=8cm所以CP=(8-3t)cm。因为两个三角形全等,对应边没有明确,
因此需要分类讨论,才能不丢解。当BD=CP时,D为AB的中点,所以BD=5cm,所以5=8-3t,得t=1。因为△BDP≌△CPQ,所以BP=CQ,得3t=at,得a=3。当BP=CP时,3t=8-3t,得t=4/3,因为△BDP≌△CQP,所以BD=CQ,即5=4a/3,得a=15/4。综上所述,a值为3或15/4.