发布网友 发布时间:2023-03-23 10:19
共1个回答
热心网友 时间:2023-10-14 04:31
简单的科普一下,研究这个的理论称为纽结理论。
两个纽结a和b等价,当且仅当它们之间可以通过有限个Reidemeister变换的复合相互转化,如果从代数拓扑的角度,纽结作为一个嵌入在三维欧式空间中的一维流形,最自然的不变量就是它的纽结群,a的群就是S^3a的基本群,事实上纽结的基本群和一般流形的基本群相比是相当容易计算的,只要简单地使用饭卡盆定理就行了,但是两个纽结的基本群相同并不意味着同构,同时也可能相当复杂,所以现在一般使用纽结多项式作为判断的不变量,最早的亚历山大多项式就是考虑S^3a的覆叠空间的第一同调群得到的,后来其他的各种纽结多项式,总之就是如果两个纽结是等价的就可以随便操作。