发布网友 发布时间:2023-04-02 15:33
共1个回答
热心网友 时间:2024-01-19 06:03
arcsecx的导数:1/[x√(x²-1)]。
可用隐函数的办法求:
设y=arcsecx,则secy=x。
两边求导得:secytanyy '=1
得y'=1/[secytany]=1/[secy√(sec²y-1)=1/[x√(x²-1)]
扩展资料:
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
常用求导公式:
(1)(cosx)' = - sinx
(2)(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
(3)(cotx)'=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2
(4)(secx)'=tanx·secx
(5)(cscx)'=-cotx·cscx
(6)(arcsinx)'=1/(1-x^2)^1/2
(7)(arccosx)'=-1/(1-x^2)^1/2
(8)(arctanx)'=1/(1+x^2)
(9)(arccotx)'=-1/(1+x^2)
热心网友 时间:2024-01-19 06:03
arcsecx的导数:1/[x√(x²-1)]。
可用隐函数的办法求:
设y=arcsecx,则secy=x。
两边求导得:secytanyy '=1
得y'=1/[secytany]=1/[secy√(sec²y-1)=1/[x√(x²-1)]
扩展资料:
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
常用求导公式:
(1)(cosx)' = - sinx
(2)(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
(3)(cotx)'=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2
(4)(secx)'=tanx·secx
(5)(cscx)'=-cotx·cscx
(6)(arcsinx)'=1/(1-x^2)^1/2
(7)(arccosx)'=-1/(1-x^2)^1/2
(8)(arctanx)'=1/(1+x^2)
(9)(arccotx)'=-1/(1+x^2)