发布网友 发布时间:2023-04-02 21:18
共1个回答
热心网友 时间:1天前
第一二三类边界条件如下:
第一类边界条件:给出未知函数在边界上的数值;
第二类边界条件:给出未知函数在边界外法线的方向导数;
第三类边界条件:给出未知函数在边界上的函数值和外法线的方向导数的线性组合。
边界条件的简介
有限元计算,无论是ansys,abaqus,msc还是comsol等,归结为一句话就是解微分方程。而解微分方程要有定解,就一定要引入条件, 这些附加条件称为定解条件。定解条件的形式很多,最常见的有两种——初始条件和边界条件。
如果方程要求未知量y(x)及其导数y′(x)在自变量的同一点x=x0取给定的值,即y(x0 )=y0,y′(x0)= y0′,则这种条件就称为初始条件,由方程和初始条件构成的问题就称为初值问题;
而在许多实际问题中,往往要求微分方程的解在在某个给定区间a ≤ x ≤b的端点满足一定的条件,如y(a) = A , y(b) = B,则给出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。
热心网友 时间:1天前
第一二三类边界条件如下:
第一类边界条件:给出未知函数在边界上的数值;
第二类边界条件:给出未知函数在边界外法线的方向导数;
第三类边界条件:给出未知函数在边界上的函数值和外法线的方向导数的线性组合。
边界条件的简介
有限元计算,无论是ansys,abaqus,msc还是comsol等,归结为一句话就是解微分方程。而解微分方程要有定解,就一定要引入条件, 这些附加条件称为定解条件。定解条件的形式很多,最常见的有两种——初始条件和边界条件。
如果方程要求未知量y(x)及其导数y′(x)在自变量的同一点x=x0取给定的值,即y(x0 )=y0,y′(x0)= y0′,则这种条件就称为初始条件,由方程和初始条件构成的问题就称为初值问题;
而在许多实际问题中,往往要求微分方程的解在在某个给定区间a ≤ x ≤b的端点满足一定的条件,如y(a) = A , y(b) = B,则给出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。